Skip to main content

Development of the Hip: Phylogeny and Ontogeny

  • Chapter
  • First Online:
  • 469 Accesses

Abstract

Positioned centrally in the mammal body, early evolution of the hip involved major changes in the position of the limbs relative to the trunk. The emergence of bipedalism freed the upper limbs for tasks other than locomotion. The recent evolution of apes to modern humans (phylogeny) is characterized by obligate bipedal gait with extensive skeletal adaptations in the lumbo-pelvic region to enable energy-efficient gait and posture. Compared to our closest relatives in evolution, the nonhuman apes (chimpanzee, bonobo, gorilla, gibbon and orangutan), growth and development (ontogeny) of the human hip has three peculiarities that can be associated to such developmental hip disorders as dysplasia, SCFE and hip morphotypes (e.g. coxa recta).

We review the bony structure of the hip, with regard to its evolution, developmental disorders and different resulting morphotypes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wagner DO, Aspenberg P. Where did bone come from? Acta Orthop. 2011;82(4):393–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kawasaki K, Weiss KM. Mineralized tissue and vertebrate evolution: the secretory calcium-binding phosphoprotein gene cluster. Proc Natl Acad Sci U S A. 2003;100(7):4060–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith MM, Hall BK. Development and evolutionary origins of vertebrate skeletogenic and odontogenic tissues. Biol Rev Camb Philos Soc. 1990;65(3):277–373.

    Article  CAS  PubMed  Google Scholar 

  4. Briggs DEG, Erwin DH, Collier FJ. The fossils of the Burgess Shale. Washington: Smithsonian Institution Press; 1994.

    Google Scholar 

  5. Gould SJ. Wonderful life: the Burgess Shale and the nature of history. London: Vintage; 2000.

    Google Scholar 

  6. Davidson EH, Erwin DH. Evolutionary innovation and stability in animal gene networks. J Exp Zool B Mol Dev Evol. 2010;314(3):182–6.

    PubMed  Google Scholar 

  7. Davis MC, Dahn RD, Shubin NH. An autopodial-like pattern of Hox expression in the fins of a basal actinopterygian fish. Nature. 2007;447(7143):473–6.

    Article  CAS  PubMed  Google Scholar 

  8. Carrier DR. The evolution of locomotor stamina in tetrapods: circumventing a mechanical constraint. Paleobiology. 1987;13:326–41.

    Article  Google Scholar 

  9. Bouma HW, de Boer SF, de Vos J, van Kampen PM, Hogervorst T. Mammal hip morphology and function: coxa recta and coxa rotunda. Anat Rec. 2013;296(2):250–6.

    Article  Google Scholar 

  10. Hogervorst T, Bouma HW, de Vos J. Evolution of the hip and pelvis. Acta Orthop Suppl. 2009;80(336):1–39.

    Article  PubMed  Google Scholar 

  11. Goodman DA, Feighan JE, Smith AD, Latimer B, Buly RL, Cooperman DR. Subclinical slipped capital femoral epiphysis. Relationship to osteoarthrosis of the hip. J Bone Joint Surg Am. 1997;79(10):1489–97.

    Article  CAS  PubMed  Google Scholar 

  12. Toogood PA, Skalak A, Cooperman DR. Proximal femoral anatomy in the normal human population. Clin Orthop Relat Res. 2009;467(4):876–85.

    Article  PubMed  Google Scholar 

  13. Nötzli HP, Wyss TF, Stoecklin CH, Schmid MR, Treiber K, Hodler J. The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg Br. 2002;84(4):556–60.

    Article  PubMed  Google Scholar 

  14. Serrat MA, Reno PL, McCollum MA, Meindl RS, Lovejoy CO. Variation in mammalian proximal femoral development: comparative analysis of two distinct ossification patterns. J Anat. 2007;210(3):249–58.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ganz R, Parvizi J, Beck M, Leunig M, Notzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003;417:112–20.

    Google Scholar 

  16. Doran DM. Ontogeny of locomotion in mountain gorillas and chimpanzees. J Hum Evol. 1997;32(4):323–44.

    Article  CAS  PubMed  Google Scholar 

  17. Lovejoy CO. The natural history of human gait and posture. Part 1. Spine and pelvis. Gait Posture. 2005;21(1):95–112.

    PubMed  Google Scholar 

  18. Robinson JT, Freeman L, Sigmon BA. Some aspects of pongid and hominid bipedality. J Hum Evol. 1972;1:361–9.

    Article  Google Scholar 

  19. Sibley CG, Ahlquist JE. DNA hybridization evidence of hominoid phylogeny: results from an expanded data set. J Mol Evol. 1987;26(1–2):99–121.

    Article  CAS  PubMed  Google Scholar 

  20. Lovejoy CO. The natural history of human gait and posture. Part 2. Hip and thigh. Gait Posture. 2005;21(1):113–24.

    Article  PubMed  Google Scholar 

  21. Pontzer H, Raichlen DA, Sockol MD. The metabolic cost of walking in humans, chimpanzees, and early hominins. J Hum Evol. 2009;56(1):43–54.

    Article  PubMed  Google Scholar 

  22. Murray RO. The aetiology of primary osteoarthritis of the hip. Br J Radiol. 1965;38(455):810–24.

    Article  CAS  PubMed  Google Scholar 

  23. Gosvig KK, Jacobsen S, Sonne-Holm S, Palm H, Troelsen A. Prevalence of malformations of the hip joint and their relationship to sex, groin pain, and risk of osteoarthritis: a population-based survey. J Bone Joint Surg Am. 2010;92(5):1162–9.

    Article  PubMed  Google Scholar 

  24. Reichenbach S, Juni P, Werlen S, et al. Prevalence of cam-type deformity on hip magnetic resonance imaging in young males: a cross-sectional study. Arthritis Care Res (Hoboken). 2010;62(9):1319–27.

    Article  Google Scholar 

  25. Hack K, Di Primio G, Rakhra K, Beaule PE. Prevalence of cam-type femoroacetabular impingement morphology in asymptomatic volunteers. J Bone Joint Surg Am. 2010;92(14):2436–44.

    Article  PubMed  Google Scholar 

  26. Pollard TC, Villar RN, Norton MR, et al. Femoroacetabular impingement and classification of the cam deformity: the reference interval in normal hips. Acta Orthop. 2010;81(1):134–41.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Laborie LB, Lehmann TG, Engesaeter IO, Eastwood DM, Engesaeter LB, Rosendahl K. Prevalence of radiographic findings thought to be associated with femoroacetabular impingement in a population-based cohort of 2081 healthy young adults. Radiology. 2011;260(2):494–502.

    Article  PubMed  Google Scholar 

  28. Kim YH. Relationship between the sphericity of femoral head-acetabulum and the low incidence of primary osteoarthritis of the hip joint in Koreans. Yonsei Med J. 1989;30(3):280–7.

    Article  CAS  PubMed  Google Scholar 

  29. Takeyama A, Naito M, Shiramizu K, Kiyama T. Prevalence of femoroacetabular impingement in Asian patients with osteoarthritis of the hip. Int Orthop. 2009;33(5):1229–32.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dudda M, Kim YJ, Zhang Y, et al. Morphologic differences between the hips of Chinese women and white women: could they account for the ethnic difference in the prevalence of hip osteoarthritis? Arthritis Rheum. 2011;63(10):2992–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hoaglund FT, Shiba R, Newberg AH, Leung KY. Diseases of the hip. A comparative study of Japanese Oriental and American white patients. J Bone Joint Surg Am. 1985;67(9):1376–83.

    Article  CAS  PubMed  Google Scholar 

  32. Maini L, Palanisamy Y, Shetty V, Kasture S, Shetty V. Hip impingement in the Indian population: hip anthropometry measurements in 100 hips. Hip Int. 2012;22(3):335–8.

    Article  PubMed  Google Scholar 

  33. Malhotra R, Kannan A, Kancherla R, Khatri D, Kumar V. Femoral head-neck offset in the Indian population: a CT based study. Indian J Orthop. 2012;46(2):212–5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nakahara I, Takao M, Sakai T, Nishii T, Yoshikawa H, Sugano N. Gender differences in 3D morphology and bony impingement of human hips. J Orthop Res. 2011;29(3):333–9.

    Article  PubMed  Google Scholar 

  35. Nevitt MC, Xu L, Zhang Y, et al. Very low prevalence of hip osteoarthritis among Chinese elderly in Beijing, China, compared with whites in the United States: the Beijing osteoarthritis study. Arthritis Rheum. 2002;46(7):1773–9.

    Article  PubMed  Google Scholar 

  36. Lau EM, Lin F, Lam D, Silman A, Croft P. Hip osteoarthritis and dysplasia in Chinese men. Ann Rheum Dis. 1995;54(12):965–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dudda M, Kim YJ, Zhang Y, et al. Morphological differences between Chinese and Caucasian female hips: could they account for the ethnic difference in hip osteoarthritis? Arthritis Rheum. 2011;63(10):2992–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fikkers JT, Bouma HW, de Boer SF, Toogood PA, van Kampen PM, Hogervorst T. What ape proximal femora tell us about femoroacetabular impingement: a comparison. Clin Orthop Relat Res. 2015;473(4):1204–11.

    Article  PubMed  Google Scholar 

  39. Nakatsukasa M, Hayama S, Preuschoft H. Postcranial skeleton of a macaque trained for bipedal standing and walking and implications for functional adaptation. Folia Primatol (Basel). 1995;64(1–2):1–29.

    Article  CAS  Google Scholar 

  40. Hogervorst T, Eilander W, Fikkers JT, Meulenbelt I. Hip ontogenesis: how evolution, genes, and load history shape hip morphotype and cartilotype. Clin Orthop Relat Res. 2012;470(12):3284–96.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Le Damany P. La Luxation Congenitale de la Hanche, French: the congenital hip dislocation. Paris: Masson; 1923.

    Google Scholar 

  42. Browne D. Congenital deformities of mechanical origin: (section for the study of disease in children). Proc R Soc Med. 1936;29(11):1409–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Walker JM. Histological study of the fetal development of the human acetabulum and labrum: significance in congenital hip disease. Yale J Biol Med. 1981;54(4):255–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ralis Z, McKibbin B. Changes in shape of the human hip joint during its development and their relation to its stability. J Bone Joint Surg Br. 1973;55(4):780–5.

    CAS  PubMed  Google Scholar 

  45. Walker JM, Goldsmith CH. Morphometric study of the fetal development of the human hip joint: significance for congenital hip disease. Yale J Biol Med. 1981;54(6):411–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jouve JL, Glard Y, Garron E, et al. Anatomical study of the proximal femur in the fetus. J Pediatr Orthop B. 2005;14(2):105–10.

    Article  PubMed  Google Scholar 

  47. Bonneau N, Simonis C, Seringe R, Tardieu C. Study of femoral torsion during prenatal growth: interpretations associated with the effects of intrauterine pressure. Am J Phys Anthropol. 2011;145(3):438–45.

    Article  PubMed  Google Scholar 

  48. Ogden JA. Development and growth of the hip. In: Katz JF, Siffert RS, editors. Management of hip disorders in children. Philadelphia: J.B. Lippincott; 1983. p. 1–32.

    Google Scholar 

  49. Roaas A, Andersson GB. Normal range of motion of the hip, knee and ankle joints in male subjects, 30-40 years of age. Acta Orthop Scand. 1982;53(2):205–8.

    Article  CAS  PubMed  Google Scholar 

  50. Roach KE, Miles TP. Normal hip and knee active range of motion: the relationship to age. Phys Ther. 1991;71(9):656–65.

    Article  CAS  PubMed  Google Scholar 

  51. Novacheck TF. Walking, running, and sprinting: a three-dimensional analysis of kinematics and kinetics. Instr Course Lect. 1995;44:497–506.

    CAS  PubMed  Google Scholar 

  52. Back W, Schamhardt HC, Savelberg HH, et al. How the horse moves: 2. Significance of graphical representations of equine hind limb kinematics. Equine Vet J. 1995;27(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  53. Tayton E. Femoral anteversion: a necessary angle or an evolutionary vestige? J Bone Joint Surg Br. 2007;89(10):1283–8.

    Article  CAS  PubMed  Google Scholar 

  54. Bixby SD, Kienle K-P, Nasreddine A, Zurakowski D, Kim Y-J, Yen Y-M. Reference values for proximal femoral anatomy in adolescents based on sex, physis, and imaging plane. Am J Sports Med. 2013;41(9):2074–82.

    Article  PubMed  Google Scholar 

  55. Kienle KP, Keck J, Werlen S, Kim YJ, Siebenrock KA, Mamisch TC. Femoral morphology and epiphyseal growth plate changes of the hip during maturation: MR assessments in a 1-year follow-up on a cross-sectional asymptomatic cohort in the age range of 9-17 years. Skeletal Radiol. 2012;41(11):1381–90.

    Article  PubMed  Google Scholar 

  56. Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech. 1993;26(8):969–90.

    Article  CAS  PubMed  Google Scholar 

  57. Bergmann G, Graichen F, Rohlmann A. Hip joint forces in sheep. J Biomech. 1999;32(8):769–77.

    Article  CAS  PubMed  Google Scholar 

  58. Shea BT. Allometry and heterochrony in the African apes. Am J Phys Anthropol. 1983;62(3):275–89.

    Article  CAS  PubMed  Google Scholar 

  59. Tardieu C. Short adolescence in early hominids: infantile and adolescent growth of the human femur. Am J Phys Anthropol. 1998;107(2):163–78.

    Article  CAS  PubMed  Google Scholar 

  60. Agricola R, Bessems JH, Ginai AZ, et al. The development of Cam-type deformity in adolescent and young male soccer players. Am J Sports Med. 2012;40(5):1099–106.

    Article  PubMed  Google Scholar 

  61. Siebenrock KA, Wahab KH, Werlen S, Kalhor M, Leunig M, Ganz R. Abnormal extension of the femoral head epiphysis as a cause of cam impingement. Clin Orthop Relat Res. 2004;418:54–60.

    Article  Google Scholar 

  62. Schaeffeler C, Eiber M, Holzapfel K, Gollwitzer H, Rummeny EJ, Woertler K. The epiphyseal torsion angle in MR arthrography of the hip: diagnostic utility in patients with femoroacetabular impingement syndrome. AJR Am J Roentgenol. 2012;198(3):W237–43.

    Article  PubMed  Google Scholar 

  63. Stulberg SD, Cordell LD, Harris WH (1975) Unrecognized childhood hip disease: a major cause of idiopathic osteoarthritis of the hip. The hip. Proceedings of the Third Meeting of The Hip Society, Saint Louis, C.V. Mosby Company.

    Google Scholar 

  64. Siebenrock KA, Ferner F, Noble PC, Santore RF, Werlen S, Mamisch TC. The Cam-type deformity of the proximal femur arises in childhood in response to vigorous sporting activity. Clin Orthop Relat Res. 2011;469:3229–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Baker-Lepain JC, Lynch JA, Parimi N, et al. Variant alleles of the WNT antagonist FRZB are determinants of hip shape and modify the relationship between hip shape and osteoarthritis. Arthritis Rheum. 2012;64(5):1457–65.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Waarsing JH, Kloppenburg M, Slagboom PE, et al. Osteoarthritis susceptibility genes influence the association between hip morphology and osteoarthritis. Arthritis Rheum. 2011;63(5):1349–54.

    Article  CAS  PubMed  Google Scholar 

  67. Stem ES, O’Connor MI, Kransdorf MJ, Crook J. Computed tomography analysis of acetabular anteversion and abduction. Skeletal Radiol. 2006;35(6):385–9.

    Article  PubMed  Google Scholar 

  68. Murtha PE, Hafez MA, Jaramaz B, DiGioia AM. Variations in acetabular anatomy with reference to total hip replacement. J Bone Joint Surg Br. 2008;90(3):308–13.

    Article  CAS  PubMed  Google Scholar 

  69. Ezoe M, Naito M, Inoue T. The prevalence of acetabular retroversion among various disorders of the hip. J Bone Joint Surg Am. 2006;88(2):372–9.

    PubMed  Google Scholar 

  70. Giori NJ, Trousdale RT. Acetabular retroversion is associated with osteoarthritis of the hip. Clin Orthop Relat Res. 2003;417:263–9.

    Google Scholar 

  71. Bouma HW, Hogervorst T, Audenaert E, Krekel P, van Kampen PM. Can combining femoral and acetabular morphology parameters improve the characterization of femoroacetabular impingement? Clin Orthop Relat Res. 2015;473(4):1396–403.

    Article  PubMed  Google Scholar 

  72. Jacobsen S, Sonne-Holm S, Soballe K, Gebuhr P, Lund B. Radiographic case definitions and prevalence of osteoarthrosis of the hip: a survey of 4 151 subjects in the Osteoarthritis Substudy of the Copenhagen City Heart Study. Acta Orthop Scand. 2004;75(6):713–20.

    Article  PubMed  Google Scholar 

  73. Inoue K, Wicart P, Kawasaki T, et al. Prevalence of hip osteoarthritis and acetabular dysplasia in french and Japanese adults. Rheumatology (Oxford). 2000;39(7):745–8.

    Article  CAS  Google Scholar 

  74. Yoshimura N, Campbell L, Hashimoto T, et al. Acetabular dysplasia and hip osteoarthritis in Britain and Japan. Br J Rheumatol. 1998;37(11):1193–7.

    Article  CAS  PubMed  Google Scholar 

  75. Mahan ST, Kasser JR. Does swaddling influence developmental dysplasia of the hip? Pediatrics. 2008;121(1):177–8.

    Article  PubMed  Google Scholar 

  76. Tannast M, Pfannebecker P, Schwab JM, Albers CE, Siebenrock KA, Buchler L. Pelvic morphology differs in rotation and obliquity between developmental dysplasia of the hip and retroversion. Clin Orthop Relat Res. 2012;470(12):3297–305.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hogervorst T, Bouma H, de Boer SF, de Vos J. Human hip impingement morphology: an evolutionary explanation. J Bone Joint Surg Br. 2011;93(6):769–76.

    Article  CAS  PubMed  Google Scholar 

  78. Ridley M. Brief communication: pelvic sexual dimorphism and relative neonatal brain size really are related. Am J Phys Anthropol. 1995;97(2):197–200.

    Article  CAS  PubMed  Google Scholar 

  79. Bernstein P, Crelin ES. Bony pelvic sexual dimorphism in the rat. Anat Rec. 1967;157(3):517–25.

    Article  Google Scholar 

  80. Berdnikovs S, Bernstein M, Metzler A, German RZ. Pelvic growth: ontogeny of size and shape sexual dimorphism in rat pelves. J Morphol. 2007;268(1):12–22.

    Article  CAS  PubMed  Google Scholar 

  81. Jarvik E. Basic structure and evolution of vertebrates. London: Academic; 1980.

    Google Scholar 

  82. Kummer B. Biomechanik: Form und Funktion des Bewegungsapparates. Köln: Dt. Ärzte-Verlag; 2004.

    Google Scholar 

  83. Hogervorst T, Vereecke E. Evolution of the human hip. Part 2: muscling the double extension. J Hip Preserv Surg. 2015;2:3–14.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Hogervorst MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Hogervorst, T., Kienle, KP., Tannast, M. (2017). Development of the Hip: Phylogeny and Ontogeny. In: McCarthy, J., Noble, P., Villar, R. (eds) Hip Joint Restoration. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0694-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0694-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0693-8

  • Online ISBN: 978-1-4614-0694-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics