Skip to main content

Obesity, Type 2 Diabetes and Cancer

  • Chapter
  • First Online:
Book cover Insulin-like Growth Factors and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 758 Accesses

Abstract

A large percentage of the developed world’s population is now either officially overweight or obese; meanwhile, cancer rates have been rising steadily. Cases of type 2 diabetes have also become alarmingly common. In this chapter, we discuss the epidemiological evidence which suggests that obesity, type 2 diabetes and ­cancer are linked. Possible mechanisms for obesity leading to type 2 diabetes and cancer are discussed, as well as the recent studies which potentially uncover ­therapies to treat aspects and reduce the rates of cancer associated with obesity and type 2 diabetes.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser, 1995. 854: p. 1–452.

    Google Scholar 

  • Kelly, T., et al., Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond), 2008. 32(9): p. 1431–7.

    Google Scholar 

  • Flegal, K.M., et al., Prevalence and trends in obesity among US adults, 1999–2008. Jama. 303(3): p. 235–41.

    Google Scholar 

  • Wang, Y., et al., Will all Americans become overweight or obese? estimating the progression and cost of the US obesity epidemic. Obesity (Silver Spring), 2008. 16(10): p. 2323–30.

    Google Scholar 

  • Healthy lifestyles: Knowledge, attitudes and behavour, in Health Survey for England, NHS, Editor. 2008.

    Google Scholar 

  • McMichael, A.J., Food, nutrition, physical activity and cancer prevention. Authoritative report from World Cancer Research Fund provides global update. Public Health Nutr, 2008. 11(7): p. 762–3.

    Google Scholar 

  • Finkelstein, E.A., et al., Annual medical spending attributable to obesity: Payer- and service-specific estimates. Health Affairs, 2009. 28(5): w822–w831.

    Google Scholar 

  • Withrow, D. and D.A. Alter, The economic burden of obesity worldwide: a systematic review of the direct costs of obesity. Obes Rev, 2010.

    Google Scholar 

  • Diabetes Research and Statistics. 2007.

    Google Scholar 

  • Diabetes UK. What is diabetes? 2010.

    Google Scholar 

  • Alberti, K.G. and P.Z. Zimmet, Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med, 1998. 15(7): p. 539–53.

    Google Scholar 

  • Van Itallie, T.B., Health implications of overweight and obesity in the United States. Ann Intern Med, 1985. 103(6 ( Pt 2)): p. 983–8.

    Google Scholar 

  • Ohlson, L.O., et al., Risk factors for type 2 (non-insulin-dependent) diabetes mellitus. Thirteen and one-half years of follow-up of the participants in a study of Swedish men born in 1913. Diabetologia, 1988. 31(11): p. 798–805.

    Google Scholar 

  • Lundgren, H., et al., Dietary habits and incidence of noninsulin-dependent diabetes mellitus in a population study of women in Gothenburg, Sweden. Am J Clin Nutr, 1989. 49(4): p. 708–12.

    PubMed  CAS  Google Scholar 

  • Perry, I.J., et al., Prospective study of risk factors for development of non-insulin dependent diabetes in middle aged British men. Bmj, 1995. 310(6979): p. 560–4.

    PubMed  CAS  Google Scholar 

  • Colditz, G.A., et al., Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med, 1995. 122(7): p. 481–6.

    PubMed  CAS  Google Scholar 

  • Arnlov, J., et al., Impact of body mass index and the metabolic syndrome on the risk of cardiovascular disease and death in middle-aged men. Circulation, 2009. 121(2): p. 230–6.

    PubMed  Google Scholar 

  • Willett, W.C., et al., Weight, weight change, and coronary heart disease in women. Risk within the ‘normal’ weight range. Jama, 1995. 273(6): p. 461–5.

    Google Scholar 

  • Rimm, E.B., et al., Body size and fat distribution as predictors of coronary heart disease among middle-aged and older US men. Am J Epidemiol, 1995. 141(12): p. 1117–27.

    PubMed  CAS  Google Scholar 

  • Krauss, R.M., et al., Obesity: impact on cardiovascular disease. Circulation, 1998. 98(14): p. 1472–6.

    CAS  Google Scholar 

  • Rexrode, K.M., et al., A prospective study of body mass index, weight change, and risk of stroke in women. Jama, 1997. 277(19): p. 1539–45.

    PubMed  CAS  Google Scholar 

  • Kato, I., et al., Prospective study of clinical gallbladder disease and its association with obesity, physical activity, and other factors. Dig Dis Sci, 1992. 37(5): p. 784–90.

    PubMed  CAS  Google Scholar 

  • Anderson, J.J. and D.T. Felson, Factors associated with osteoarthritis of the knee in the first national Health and Nutrition Examination Survey (HANES I). Evidence for an association with overweight, race, and physical demands of work. Am J Epidemiol, 1988. 128(1): p. 179–89.

    Google Scholar 

  • WHO, International Agency for Research on Cancer. Nutrition and lifestyle: Opportunities for cancer prevention. 2002.

    Google Scholar 

  • ACS, Cancer Facts and Figures. American Cancer Society, 2010: p. 1–64.

    Google Scholar 

  • Vainio, H., R. Kaaks, and F. Bianchini, Weight control and physical activity in cancer prevention: international evaluation of the evidence. Eur J Cancer Prev, 2002. 11 Suppl 2: p. S94–100.

    Google Scholar 

  • Calle, E.E., et al., Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med, 2003. 348(17): p. 1625–38.

    Google Scholar 

  • Lahmann, P.H., et al., Body size and breast cancer risk: findings from the European Prospective Investigation into Cancer And Nutrition (EPIC). Int J Cancer, 2004. 111(5): p. 762–71.

    PubMed  CAS  Google Scholar 

  • Berclaz, G., et al., Body mass index as a prognostic feature in operable breast cancer: the International Breast Cancer Study Group experience. Ann Oncol, 2004. 15(6): p. 875–84.

    PubMed  CAS  Google Scholar 

  • Dossus, L., et al., Obesity, inflammatory markers and endometrial cancer risk: a prospective case-control study. Endocr Relat Cancer 2010.

    Google Scholar 

  • Moore, L.L., et al., BMI and waist circumference as predictors of lifetime colon cancer risk in Framingham Study adults. Int J Obes Relat Metab Disord, 2004. 28(4): p. 559–67.

    PubMed  CAS  Google Scholar 

  • Larsson, S.C. and A. Wolk, Obesity and colon and rectal cancer risk: a meta-analysis of prospective studies. Am J Clin Nutr, 2007. 86(3): p. 556–65.

    PubMed  CAS  Google Scholar 

  • Moghaddam, A.A., M. Woodward, and R. Huxley, Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. Cancer Epidemiol Biomarkers Prev, 2007. 16(12): p. 2533–47.

    PubMed  Google Scholar 

  • Larsson, S.C., N. Orsini, and A. Wolk, Body mass index and pancreatic cancer risk: A meta-analysis of prospective studies. Int J Cancer, 2007. 120(9): p. 1993–8.

    PubMed  CAS  Google Scholar 

  • Corley, D.A., A. Kubo, and W. Zhao, Abdominal obesity and the risk of esophageal and gastric cardia carcinomas. Cancer Epidemiol Biomarkers Prev, 2008. 17(2): p. 352–8.

    PubMed  Google Scholar 

  • Larsson, S.C. and A. Wolk, Obesity and risk of non-Hodgkin’s lymphoma: a meta-analysis. Int J Cancer, 2007. 121(7): p. 1564–70.

    PubMed  CAS  Google Scholar 

  • Birmann, B.M., et al., Body mass index, physical activity, and risk of multiple myeloma. Cancer Epidemiol Biomarkers Prev, 2007. 16(7): p. 1474–8.

    PubMed  Google Scholar 

  • Kubo, A. and D.A. Corley, Body mass index and adenocarcinomas of the esophagus or gastric cardia: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev, 2006. 15(5): p. 872–8.

    PubMed  Google Scholar 

  • Welzel, T.M., et al., Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based case-control study. Clin Gastroenterol Hepatol, 2007. 5(10): p. 1221–8.

    PubMed  Google Scholar 

  • Batty, G.D., et al., Obesity and overweight in relation to liver disease mortality in men: 38 year follow-up of the original Whitehall study. Int J Obes (Lond), 2008. 32(11): p. 1741–4.

    Google Scholar 

  • Bergstrom, A., et al., Obesity and renal cell cancer--a quantitative review. Br J Cancer, 2001. 85(7): p. 984–90.

    PubMed  CAS  Google Scholar 

  • Pan, B.N., et al., [Clinical analysis of 174 cases of primary ureteral carcinoma]. Zhonghua Wai Ke Za Zhi, 2004. 42(23): p. 1447–9.

    PubMed  Google Scholar 

  • Kuriyama, S., et al., Obesity and risk of cancer in Japan. Int J Cancer, 2005. 113(1): p. 148–57.

    PubMed  CAS  Google Scholar 

  • Renehan, A.G., et al., Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet, 2008. 371(9612): p. 569–78.

    PubMed  Google Scholar 

  • Gonzalez, C.A. and E. Riboli, Diet and cancer prevention: Contributions from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur J Cancer, 2010. 46(14): p. 2555–62.

    PubMed  Google Scholar 

  • Ursin, G., et al., A meta-analysis of body mass index and risk of premenopausal breast cancer. Epidemiology, 1995. 6(2): p. 137–41.

    PubMed  CAS  Google Scholar 

  • van den Brandt, P.A., et al., Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am J Epidemiol, 2000. 152(6): p. 514–27.

    PubMed  Google Scholar 

  • Olsen, C.M., et al., Obesity and the risk of epithelial ovarian cancer: a systematic review and meta-analysis. Eur J Cancer, 2007. 43(4): p. 690–709.

    PubMed  Google Scholar 

  • Ma, J., et al., Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis. Lancet Oncol, 2008. 9(11): p. 1039–47.

    PubMed  CAS  Google Scholar 

  • Wallstrom, P., et al., A prospective Swedish study on body size, body composition, diabetes, and prostate cancer risk. Br J Cancer, 2009. 100(11): p. 1799–805.

    PubMed  CAS  Google Scholar 

  • Khan, N., F. Afaq, and H. Mukhtar, Lifestyle as risk factor for cancer: Evidence from human studies. Cancer Lett 2010. 293(2): p. 133–43.

    PubMed  CAS  Google Scholar 

  • Coughlin, S.S., et al., Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. Am J Epidemiol, 2004. 159(12): p. 1160–7.

    PubMed  Google Scholar 

  • Jee, S.H., et al., Fasting serum glucose level and cancer risk in Korean men and women. Jama, 2005. 293(2): p. 194–202.

    PubMed  CAS  Google Scholar 

  • Inoue, M., et al., Diabetes mellitus and the risk of cancer: results from a large-scale population-based cohort study in Japan. Arch Intern Med, 2006. 166(17): p. 1871–7.

    PubMed  Google Scholar 

  • Noto, H., et al., Substantially increased risk of cancer in patients with diabetes mellitus: a systematic review and meta-analysis of epidemiologic evidence in Japan. J Diabetes Complications 2010. 24(5): p. 345–53.

    PubMed  Google Scholar 

  • Bruning, P.F., et al., Insulin resistance and breast-cancer risk. Int J Cancer, 1992. 52(4): p. 511–6.

    PubMed  CAS  Google Scholar 

  • Weiderpass, E., et al., Risk of endometrial and breast cancer in patients with diabetes mellitus. Int J Cancer, 1997. 71(3): p. 360–3.

    PubMed  CAS  Google Scholar 

  • Michels, K.B., et al., Type 2 diabetes and subsequent incidence of breast cancer in the Nurses’ Health Study. Diabetes Care, 2003. 26(6): p. 1752–8.

    PubMed  Google Scholar 

  • Pisani, P., Hyper-insulinaemia and cancer, meta-analyses of epidemiological studies. Arch Physiol Biochem, 2008. 114(1): p. 63–70.

    PubMed  CAS  Google Scholar 

  • Verheus, M., et al., Serum C-peptide levels and breast cancer risk: results from the European Prospective Investigation into Cancer and Nutrition (EPIC). Int J Cancer, 2006. 119(3): p. 659–67.

    PubMed  CAS  Google Scholar 

  • Gunter, M.J., et al., Insulin, insulin-like growth factor-I, and risk of breast cancer in postmenopausal women. J Natl Cancer Inst, 2009. 101(1): p. 48–60.

    PubMed  CAS  Google Scholar 

  • Yancik, R., et al., Effect of age and comorbidity in postmenopausal breast cancer patients aged 55 years and older. Jama, 2001. 285(7): p. 885–92.

    PubMed  CAS  Google Scholar 

  • Verlato, G., et al., Mortality from site-specific malignancies in type 2 diabetic patients from Verona. Diabetes Care, 2003. 26(4): p. 1047–51.

    PubMed  Google Scholar 

  • Rousseau, M.C., et al., Diabetes mellitus and cancer risk in a population-based case-control study among men from Montreal, Canada. Int J Cancer, 2006. 118(8): p. 2105–9.

    PubMed  CAS  Google Scholar 

  • Kuriki, K., K. Hirose, and K. Tajima, Diabetes and cancer risk for all and specific sites among Japanese men and women. Eur J Cancer Prev, 2007. 16(1): p. 83–9.

    PubMed  Google Scholar 

  • Michaud, D.S., et al., Prediagnostic plasma C-peptide and pancreatic cancer risk in men and women. Cancer Epidemiol Biomarkers Prev, 2007. 16(10): p. 2101–9.

    PubMed  CAS  Google Scholar 

  • Permert, J., et al., Islet amyloid polypeptide in patients with pancreatic cancer and diabetes. N Engl J Med, 1994. 330(5): p. 313–8.

    PubMed  CAS  Google Scholar 

  • Isaksson, B., et al., Impaired insulin action on phosphatidylinositol 3-kinase activity and glucose transport in skeletal muscle of pancreatic cancer patients. Pancreas, 2003. 26(2): p. 173–7.

    PubMed  CAS  Google Scholar 

  • Hu, F.B., et al., Prospective study of adult onset diabetes mellitus (type 2) and risk of colorectal cancer in women. J Natl Cancer Inst, 1999. 91(6): p. 542–7.

    PubMed  CAS  Google Scholar 

  • Yang, Y.X., S. Hennessy, and J.D. Lewis, Type 2 diabetes mellitus and the risk of colorectal cancer. Clin Gastroenterol Hepatol, 2005. 3(6): p. 587–94.

    PubMed  Google Scholar 

  • Sturmer, T., et al., Metabolic abnormalities and risk for colorectal cancer in the physicians’ health study. Cancer Epidemiol Biomarkers Prev, 2006. 15(12): p. 2391–7.

    PubMed  Google Scholar 

  • Folsom, A.R., et al., Diabetes as a risk factor for death following endometrial cancer. Gynecol Oncol, 2004. 94(3): p. 740–5.

    PubMed  Google Scholar 

  • Borugian, M.J., et al., Prediagnostic C-peptide and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev, 2007. 16(10): p. 2164–5.

    PubMed  CAS  Google Scholar 

  • Chen, C., et al., Prostate carcinoma incidence in relation to prediagnostic circulating levels of insulin-like growth factor I, insulin-like growth factor binding protein 3, and insulin. Cancer, 2005. 103(1): p. 76–84.

    PubMed  CAS  Google Scholar 

  • Hubbard, J.S., et al., Association of prostate cancer risk with insulin, glucose, and anthropometry in the Baltimore longitudinal study of aging. Urology, 2004. 63(2): p. 253–8.

    PubMed  Google Scholar 

  • Bonovas, S., K. Filioussi, and A. Tsantes, Diabetes mellitus and risk of prostate cancer: a meta-analysis. Diabetologia, 2004. 47(6): p. 1071–8.

    PubMed  CAS  Google Scholar 

  • Kasper, J.S. and E. Giovannucci, A meta-analysis of diabetes mellitus and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev, 2006. 15(11): p. 2056–62.

    PubMed  Google Scholar 

  • Kershaw, E.E. and J.S. Flier, Adipose tissue as an endocrine organ. J Clin Endocrinol Metab, 2004. 89(6): p. 2548–56.

    PubMed  CAS  Google Scholar 

  • Grundy, S.M., Atherosclerosis imaging and the future of lipid management. Circulation, 2004. 110(23): p. 3509–11.

    PubMed  Google Scholar 

  • Chang, X., et al., Solution structures of the R6 human insulin hexamer. Biochemistry, 1997. 36(31): p. 9409–22.

    PubMed  CAS  Google Scholar 

  • Mosthaf, L., et al., Functionally distinct insulin receptors generated by tissue-specific alternative splicing. Embo J, 1990. 9(8): p. 2409–13.

    PubMed  CAS  Google Scholar 

  • Van Obberghen, E., et al., Insulin receptor: receptor activation and signal transduction. Adv Second Messenger Phosphoprotein Res, 1993. 28: p. 195–201.

    PubMed  Google Scholar 

  • Lizcano, J.M. and D.R. Alessi, The insulin signalling pathway. Curr Biol, 2002. 12(7): p. R236-8.

    PubMed  CAS  Google Scholar 

  • Puigserver, P., et al., Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature, 2003. 423(6939): p. 550–5.

    PubMed  CAS  Google Scholar 

  • Castan, I., et al., Mechanisms of inhibition of lipolysis by insulin, vanadate and peroxovanadate in rat adipocytes. Biochem J, 1999. 339 ( Pt 2): p. 281–9.

    PubMed  CAS  Google Scholar 

  • Sciacca, L., et al., Insulin receptor activation by IGF-II in breast cancers: evidence for a new autocrine/paracrine mechanism. Oncogene, 1999. 18(15): p. 2471–9.

    PubMed  CAS  Google Scholar 

  • Uhles, S., et al., Isoform-specific insulin receptor signaling involves different plasma membrane domains. J Cell Biol, 2003. 163(6): p. 1327–37.

    PubMed  CAS  Google Scholar 

  • Frasca, F., et al., Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol, 1999. 19(5): p. 3278–88.

    PubMed  CAS  Google Scholar 

  • Sacco, A., et al., Differential signaling activation by insulin and insulin-like growth factors I and II upon binding to insulin receptor isoform A. Endocrinology, 2009. 150(8): p. 3594–602.

    PubMed  CAS  Google Scholar 

  • Galbaugh, T., et al., EGF-induced activation of Akt results in mTOR-dependent p70S6 kinase phosphorylation and inhibition of HC11 cell lactogenic differentiation. BMC Cell Biol, 2006. 7: p. 34.

    Google Scholar 

  • Isotani, S., et al., Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem, 1999. 274(48): p. 34493–8.

    PubMed  CAS  Google Scholar 

  • Flynn, A. and G. Proud, Insulin-stimulated phosphorylation of initiation factor 4E is mediated by the MAP kinase pathway. FEBS Lett, 1996. 389(2): p. 162–6.

    PubMed  CAS  Google Scholar 

  • Holz, M.K., et al., mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell, 2005. 123(4): p. 569–80.

    PubMed  CAS  Google Scholar 

  • Le Marchand-Brustel, Y., et al., Insulin receptor tyrosine kinase is defective in skeletal muscle of insulin-resistant obese mice. Nature, 1985. 315(6021): p. 676–9.

    PubMed  Google Scholar 

  • Pessin, J.E. and A.R. Saltiel, Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest, 2000. 106(2): p. 165–9.

    PubMed  CAS  Google Scholar 

  • Brassard, P., et al., Impaired plasma nonesterified fatty acid tolerance is an early defect in the natural history of type 2 diabetes. J Clin Endocrinol Metab, 2008. 93(3): p. 837–44.

    PubMed  CAS  Google Scholar 

  • Boden, G., et al., FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am J Physiol Endocrinol Metab, 2002. 283(1): p. E12–9.

    PubMed  CAS  Google Scholar 

  • Patti, M.E., et al., Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA, 2003. 100(14): p. 8466–71.

    PubMed  CAS  Google Scholar 

  • Peterson, L.R., et al., Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation, 2004. 109(18): p. 2191–6.

    PubMed  Google Scholar 

  • Taylor, S.I. and E. Arioglu, Syndromes associated with insulin resistance and acanthosis nigricans. J Basic Clin Physiol Pharmacol, 1998. 9(2–4): p. 419–39.

    PubMed  CAS  Google Scholar 

  • Stern, M.P., Strategies and prospects for finding insulin resistance genes. J Clin Invest, 2000. 106(3): p. 323–7.

    PubMed  CAS  Google Scholar 

  • Gulli, G., et al., The metabolic profile of NIDDM is fully established in glucose-tolerant offspring of two Mexican-American NIDDM parents. Diabetes, 1992. 41(12): p. 1575–86.

    PubMed  CAS  Google Scholar 

  • Kashyap, S., et al., A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes, 2003. 52(10): p. 2461–74.

    PubMed  CAS  Google Scholar 

  • McGarry, J.D., What if Minkowski had been ageusic? An alternative angle on diabetes. Science, 1992. 258(5083): p. 766–70.

    PubMed  CAS  Google Scholar 

  • Coppack, S.W., Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc, 2001. 60(3): p. 349–56.

    PubMed  CAS  Google Scholar 

  • Hotamisligil, G.S., Inflammatory pathways and insulin action. Int J Obes Relat Metab Disord, 2003. 27 Suppl 3: p. S53–5.

    Google Scholar 

  • Hotamisligil, G.S., Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes, 2005. 54 Suppl 2: p. S73–8.

    Google Scholar 

  • Levinger, I., et al., Akt, AS160, metabolic risk factors and aerobic fitness in middle-aged women. Exerc Immunol Rev 2010. 16: p. 98–104.

    PubMed  Google Scholar 

  • Zhang, H.H., et al., Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes, 2002. 51(10): p. 2929–35.

    PubMed  CAS  Google Scholar 

  • Ruan, H., et al., Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes, 2002. 51(5): p. 1319–36.

    PubMed  CAS  Google Scholar 

  • Ye, J., Regulation of PPARgamma function by TNF-alpha. Biochem Biophys Res Commun, 2008. 374(3): p. 405–8.

    PubMed  CAS  Google Scholar 

  • Fain, J.N., et al., Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology, 2004. 145(5): p. 2273–82.

    PubMed  CAS  Google Scholar 

  • Vozarova, B., et al., Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res, 2001. 9(7): p. 414–7.

    PubMed  CAS  Google Scholar 

  • Esposito, K., et al., Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. Jama, 2003. 289(14): p. 1799–804.

    PubMed  CAS  Google Scholar 

  • Stith, R.D. and J. Luo, Endocrine and carbohydrate responses to interleukin-6 in vivo. Circ Shock, 1994. 44(4): p. 210–5.

    PubMed  CAS  Google Scholar 

  • Tsigos, C. and G.P. Chrousos, Physiology of the hypothalamic-pituitary-adrenal axis in health and dysregulation in psychiatric and autoimmune disorders. Endocrinol Metab Clin North Am, 1994. 23(3): p. 451–66.

    PubMed  CAS  Google Scholar 

  • Lagathu, C., et al., Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone. Biochem Biophys Res Commun, 2003. 311(2): p. 372–9.

    PubMed  CAS  Google Scholar 

  • Rieusset, J., et al., Suppressor of cytokine signaling 3 expression and insulin resistance in skeletal muscle of obese and type 2 diabetic patients. Diabetes, 2004. 53(9): p. 2232–41.

    PubMed  CAS  Google Scholar 

  • Emanuelli, B., et al., SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem, 2000. 275(21): p. 15985–91.

    PubMed  CAS  Google Scholar 

  • Klover, P.J., et al., Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes, 2003. 52(11): p. 2784–9.

    PubMed  CAS  Google Scholar 

  • Banerjee, R.R. and M.A. Lazar, Resistin: molecular history and prognosis. J Mol Med, 2003. 81(4): p. 218–26.

    PubMed  CAS  Google Scholar 

  • Steppan, C.M., et al., The hormone resistin links obesity to diabetes. Nature, 2001. 409(6818): p. 307–12.

    PubMed  CAS  Google Scholar 

  • Li, J., et al., Gene expression profile of rat adipose tissue at the onset of high-fat-diet obesity. Am J Physiol Endocrinol Metab, 2002. 282(6): p. E1334–41.

    PubMed  CAS  Google Scholar 

  • Juan, C.C., et al., Suppressed gene expression of adipocyte resistin in an insulin-resistant rat model probably by elevated free fatty acids. Biochem Biophys Res Commun, 2001. 289(5): p. 1328–33.

    PubMed  CAS  Google Scholar 

  • Le Lay, S., et al., Decreased resistin expression in mice with different sensitivities to a high-fat diet. Biochem Biophys Res Commun, 2001. 289(2): p. 564–7.

    PubMed  Google Scholar 

  • Haugen, F., et al., Inhibition by insulin of resistin gene expression in 3T3-L1 adipocytes. FEBS Lett, 2001. 507(1): p. 105–8.

    PubMed  CAS  Google Scholar 

  • Owecki, M., et al., Serum Resistin Concentrations are Higher in Human Obesity but Independent from Insulin Resistance. Exp Clin Endocrinol Diabetes, 2010.

    Google Scholar 

  • Bjorbaek, C. and B.B. Kahn, Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res, 2004. 59: p. 305–31.

    PubMed  CAS  Google Scholar 

  • Ahima, R.S. and J.S. Flier, Leptin. Annu Rev Physiol, 2000. 62: p. 413–37.

    PubMed  CAS  Google Scholar 

  • Farooqi, I.S. and S. O’Rahilly, Monogenic human obesity syndromes. Recent Prog Horm Res, 2004. 59: p. 409–24.

    PubMed  CAS  Google Scholar 

  • Zelissen, P.M., et al., Effect of three treatment schedules of recombinant methionyl human leptin on body weight in obese adults: a randomized, placebo-controlled trial. Diabetes Obes Metab, 2005. 7(6): p. 755–61.

    PubMed  CAS  Google Scholar 

  • Hedbacker, K., et al., Antidiabetic effects of IGFBP2, a leptin-regulated gene. Cell Metab, 2010. 11(1): p. 11–22.

    PubMed  CAS  Google Scholar 

  • Maeda, R., et al., [Genetic analysis of left-right asymmetry in Drosophila melanogaster]. Seikagaku, 2007. 79(12): p. 1131–4.

    PubMed  CAS  Google Scholar 

  • Scherer, P.E., et al., A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem, 1995. 270(45): p. 26746–9.

    PubMed  CAS  Google Scholar 

  • Nakano, Y., et al., Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem, 1996. 120(4): p. 803–12.

    PubMed  CAS  Google Scholar 

  • Hu, E., P. Liang, and B.M. Spiegelman, AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem, 1996. 271(18): p. 10697–703.

    PubMed  CAS  Google Scholar 

  • Chandran, M., et al., Adiponectin: more than just another fat cell hormone? Diabetes Care, 2003. 26(8): p. 2442–50.

    PubMed  CAS  Google Scholar 

  • Yamauchi, T., et al., Dual roles of adiponectin/Acrp30 in vivo as an anti-diabetic and anti-atherogenic adipokine. Curr Drug Targets Immune Endocr Metabol Disord, 2003. 3(4): p. 243–54.

    PubMed  CAS  Google Scholar 

  • Diez, J.J. and P. Iglesias, The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol, 2003. 148(3): p. 293–300.

    PubMed  CAS  Google Scholar 

  • Yamamoto, Y., et al., Adiponectin, an adipocyte-derived protein, predicts future insulin resistance: two-year follow-up study in Japanese population. J Clin Endocrinol Metab, 2004. 89(1): p. 87–90.

    PubMed  CAS  Google Scholar 

  • Nakashima, R., et al., Decreased total and high molecular weight adiponectin are independent risk factors for the development of type 2 diabetes in Japanese-Americans. J Clin Endocrinol Metab, 2006. 91(10): p. 3873–7.

    PubMed  CAS  Google Scholar 

  • Kinlaw, W.B. and B. Marsh, Adiponectin and HIV-lipodystrophy: taking HAART. Endocrinology, 2004. 145(2): p. 484–6.

    PubMed  CAS  Google Scholar 

  • Matsuzawa, Y., et al., Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol, 2004. 24(1): p. 29–33.

    PubMed  CAS  Google Scholar 

  • Kadowaki, T. and T. Yamauchi, Adiponectin and adiponectin receptors. Endocr Rev, 2005. 26(3): p. 439–51.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, N., et al., Adiponectin inhibits Toll-like receptor family-induced signaling. FEBS Lett, 2005. 579(30): p. 6821–6.

    PubMed  CAS  Google Scholar 

  • Mullen, K.L., et al., Adiponectin resistance precedes the accumulation of skeletal muscle lipids and insulin resistance in high-fat-fed rats. Am J Physiol Regul Integr Comp Physiol, 2009. 296(2): p. R243–51.

    PubMed  CAS  Google Scholar 

  • Serrano, R., et al., Differential gene expression of insulin receptor isoforms A and B and insulin receptor substrates 1, 2 and 3 in rat tissues: modulation by aging and differentiation in rat adipose tissue. J Mol Endocrinol, 2005. 34(1): p. 153–61.

    PubMed  CAS  Google Scholar 

  • Osborne, C.K., et al., Correlation among insulin binding, degradation, and biological activity in human breast cancer cells in long-term tissue culture. Cancer Res, 1978. 38(1): p. 94–102.

    PubMed  CAS  Google Scholar 

  • Papa, V., et al., Elevated insulin receptor content in human breast cancer. J Clin Invest, 1990. 86(5): p. 1503–10.

    PubMed  CAS  Google Scholar 

  • Milazzo, G., et al., Insulin receptor expression and function in human breast cancer cell lines. Cancer Res, 1992. 52(14): p. 3924–30.

    PubMed  CAS  Google Scholar 

  • Giorgino, F., et al., Overexpression of insulin receptors in fibroblast and ovary cells induces a ligand-mediated transformed phenotype. Mol Endocrinol, 1991. 5(3): p. 452–9.

    PubMed  CAS  Google Scholar 

  • Frittitta, L., et al., Insulin receptor overexpression in 184B5 human mammary epithelial cells induces a ligand-dependent transformed phenotype. J Cell Biochem, 1995. 57(4): p. 666–9.

    PubMed  CAS  Google Scholar 

  • Mathieu, M.C., et al., Insulin receptor expression and clinical outcome in node-negative breast cancer. Proc Assoc Am Physicians, 1997. 109(6): p. 565–71.

    PubMed  CAS  Google Scholar 

  • Law, J.H., et al., Phosphorylated insulin-like growth factor-i/insulin receptor is present in all breast cancer subtypes and is related to poor survival. Cancer Res, 2008. 68(24): p. 10238–46.

    PubMed  CAS  Google Scholar 

  • Nagamani, M. and C.A. Stuart, Specific binding and growth-promoting activity of insulin in endometrial cancer cells in culture. Am J Obstet Gynecol, 1998. 179(1): p. 6–12.

    PubMed  CAS  Google Scholar 

  • Kalli, K.R., et al., Functional insulin receptors on human epithelial ovarian carcinoma cells: implications for IGF-II mitogenic signaling. Endocrinology, 2002. 143(9): p. 3259–67.

    PubMed  CAS  Google Scholar 

  • Beck, E.P., et al., Identification of insulin and insulin-like growth factor I (IGF I) receptors in ovarian cancer tissue. Gynecol Oncol, 1994. 53(2): p. 196–201.

    PubMed  CAS  Google Scholar 

  • Wahner Hendrickson, A.E., et al., Expression of insulin receptor isoform A and insulin-like growth factor-1 receptor in human acute myelogenous leukemia: effect of the dual-receptor inhibitor BMS-536924 in vitro. Cancer Res, 2009. 69(19): p. 7635–43.

    Google Scholar 

  • Koenuma, M., T. Yamori, and T. Tsuruo, Insulin and insulin-like growth factor 1 stimulate proliferation of metastatic variants of colon carcinoma 26. Jpn J Cancer Res, 1989. 80(1): p. 51–8.

    PubMed  CAS  Google Scholar 

  • Cox, M.E., et al., Insulin receptor expression by human prostate cancers. Prostate, 2009. 69(1): p. 33–40.

    PubMed  CAS  Google Scholar 

  • Vella, V., et al., The IGF system in thyroid cancer: new concepts. Mol Pathol, 2001. 54(3): p. 121–4.

    PubMed  CAS  Google Scholar 

  • Fernandez, A.M., et al., Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev, 2001. 15(15): p. 1926–34.

    PubMed  CAS  Google Scholar 

  • Novosyadlyy, R., et al., Insulin-mediated acceleration of breast cancer development and progression in a nonobese model of type 2 diabetes. Cancer Res, 2010. 70(2): p. 741–51.

    PubMed  CAS  Google Scholar 

  • Fierz, Y., et al., Insulin-sensitizing therapy attenuates type 2 diabetes-mediated mammary tumor progression. Diabetes, 2010. 59(3): p. 686–93.

    PubMed  CAS  Google Scholar 

  • Tran, T.T., et al., Direct measure of insulin sensitivity with the hyperinsulinemic-euglycemic clamp and surrogate measures of insulin sensitivity with the oral glucose tolerance test: correlations with aberrant crypt foci promotion in rats. Cancer Epidemiol Biomarkers Prev, 2003. 12(1): p. 47–56.

    PubMed  CAS  Google Scholar 

  • Yakar, S., et al., Increased tumor growth in mice with diet-induced obesity: impact of ovarian hormones. Endocrinology, 2006. 147(12): p. 5826–34.

    PubMed  CAS  Google Scholar 

  • Venkateswaran, V., et al., Association of diet-induced hyperinsulinemia with accelerated growth of prostate cancer (LNCaP) xenografts. J Natl Cancer Inst, 2007. 99(23): p. 1793–800.

    PubMed  Google Scholar 

  • Bahr, C. and B. Groner, The insulin like growth factor-1 receptor (IGF-1R) as a drug target: novel approaches to cancer therapy. Growth Horm IGF Res, 2004. 14(4): p. 287–95.

    PubMed  CAS  Google Scholar 

  • Baxter, R.C., J.M. Bryson, and J.R. Turtle, Somatogenic receptors of rat liver: regulation by ­insulin. Endocrinology, 1980. 107(4): p. 1176–81.

    PubMed  CAS  Google Scholar 

  • Wang, H.S. and T.H. Wang, Polycystic ovary syndrome (PCOS), insulin resistance and insulin-like growth factors (IGfs)/IGF-binding proteins (IGFBPs). Chang Gung Med J, 2003. 26(8): p. 540–53.

    PubMed  CAS  Google Scholar 

  • Nestler, J.E., et al., A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. J Clin Endocrinol Metab, 1991. 72(1): p. 83–9.

    PubMed  CAS  Google Scholar 

  • van Agthoven, T., et al., Expression of estrogen, progesterone and epidermal growth factor receptors in primary and metastatic breast cancer. Int J Cancer, 1995. 63(6): p. 790–3.

    PubMed  Google Scholar 

  • Soos, M.A., et al., Receptors for insulin and insulin-like growth factor-I can form hybrid dimers. Characterisation of hybrid receptors in transfected cells. Biochem J, 1990. 270(2): p. 383–90.

    Google Scholar 

  • Pandini, G., et al., Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: evidence for a second mechanism of IGF-I signaling. Clin Cancer Res, 1999. 5(7): p. 1935–44.

    PubMed  CAS  Google Scholar 

  • Pandini, G., et al., Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem, 2002. 277(42): p. 39684–95.

    PubMed  CAS  Google Scholar 

  • Pandini, G., et al., Functional responses and in vivo anti-tumour activity of h7C10: a humanised monoclonal antibody with neutralising activity against the insulin-like growth factor-1 (IGF-1) receptor and insulin/IGF-1 hybrid receptors. Eur J Cancer, 2007. 43(8): p. 1318–27.

    PubMed  CAS  Google Scholar 

  • Buck, E., et al., Compensatory insulin receptor (IR) activation on inhibition of insulin-like growth factor-1 receptor (IGF-1R): rationale for cotargeting IGF-1R and IR in cancer. Mol Cancer Ther, 2010. 9(10): p. 2652–64.

    PubMed  CAS  Google Scholar 

  • Yudkin, J.S., B. Richter, and E.A. Gale, Intensive treatment of hyperglycaemia: what are the objectives? Lancet, 2010. 376(9751): p. 1462–3.

    PubMed  Google Scholar 

  • Stattin, P., et al., Prospective study of hyperglycemia and cancer risk. Diabetes Care, 2007. 30(3): p. 561–7.

    PubMed  Google Scholar 

  • Bowker, S.L. and J.A. Johnson, Prospective study of hyperglycemia and cancer risk: response to Stattin et al. Diabetes Care, 2007. 30(7): p. e77; author reply e78.

    Google Scholar 

  • Levine, W., et al., Post-load plasma glucose and cancer mortality in middle-aged men and women. 12-year follow-up findings of the Chicago Heart Association Detection Project in Industry. Am J Epidemiol, 1990. 131(2): p. 254–62.

    Google Scholar 

  • Smith, G.D., et al., Post-challenge glucose concentration, impaired glucose tolerance, diabetes, and cancer mortality in men. Am J Epidemiol, 1992. 136(9): p. 1110–4.

    PubMed  CAS  Google Scholar 

  • Tulinius, H., et al., Risk factors for malignant diseases: a cohort study on a population of 22,946 Icelanders. Cancer Epidemiol Biomarkers Prev, 1997. 6(11): p. 863–73.

    PubMed  CAS  Google Scholar 

  • Saydah, S.H., et al., Abnormal glucose tolerance and the risk of cancer death in the United States. Am J Epidemiol, 2003. 157(12): p. 1092–100.

    PubMed  Google Scholar 

  • Rapp, K., et al., Fasting blood glucose and cancer risk in a cohort of more than 140,000 adults in Austria. Diabetologia, 2006. 49(5): p. 945–52.

    PubMed  CAS  Google Scholar 

  • Yamagata, H., et al., Impact of fasting plasma glucose levels on gastric cancer incidence in a general Japanese population: the Hisayama study. Diabetes Care, 2005. 28(4): p. 789–94.

    PubMed  Google Scholar 

  • Shikany, J.M., et al., Association of glycemic load with cardiovascular disease risk factors: the Women’s Health Initiative Observational Study. Nutrition, 2010. 26(6): p. 641–7.

    PubMed  CAS  Google Scholar 

  • Kodama, Y., et al., Enhanced tumorigenesis of forestomach tumors induced by N-Methyl-N’-nitro-N-nitrosoguanidine in rats with hypoinsulinemic diabetes. Cancer Sci, 2010. 101(7): p. 1604–9.

    PubMed  CAS  Google Scholar 

  • Liu, H., Q. Ma, and J. Li, High glucose promotes cell proliferation and enhances GDNF and RET expression in pancreatic cancer cells. Mol Cell Biochem 2010.

    Google Scholar 

  • Warburg, O., On the origin of cancer cells. Science, 1956. 123(3191): p. 309–14.

    PubMed  CAS  Google Scholar 

  • Gatenby, R.A. and R.J. Gillies, Why do cancers have high aerobic glycolysis? Nat Rev Cancer, 2004. 4(11): p. 891–9.

    PubMed  CAS  Google Scholar 

  • Bui, T. and C.B. Thompson, Cancer’s sweet tooth. Cancer Cell, 2006. 9(6): p. 419–20.

    PubMed  CAS  Google Scholar 

  • Kunkel, M., et al., Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer, 2003. 97(4): p. 1015–24.

    PubMed  CAS  Google Scholar 

  • Younes, M., et al., Wide expression of the human erythrocyte glucose transporter Glut1 in human cancers. Cancer Res, 1996. 56(5): p. 1164–7.

    PubMed  CAS  Google Scholar 

  • Zhang, F. and R.L. Aft, Chemosensitizing and cytotoxic effects of 2-deoxy-D-glucose on breast cancer cells. J Cancer Res Ther, 2009. 5 Suppl 1: p. S41–3.

    Google Scholar 

  • Melstrom, L.G., et al., Adenocarcinoma of the gastroesophageal junction after bariatric surgery. Am J Surg, 2008. 196(1): p. 135–8.

    PubMed  Google Scholar 

  • Jurica, M.S., et al., The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure, 1998. 6(2): p. 195–210.

    PubMed  CAS  Google Scholar 

  • Christofk, H.R., et al., The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 2008. 452(7184): p. 230–3.

    PubMed  CAS  Google Scholar 

  • David, C.J., et al., HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature, 2009. 463(7279): p. 364–8.

    PubMed  Google Scholar 

  • Reaven, G.M., Syndrome X: is one enough? Am Heart J, 1994. 127(5): p. 1439–42.

    PubMed  CAS  Google Scholar 

  • Parks, E.J., Effect of dietary carbohydrate on triglyceride metabolism in humans. J Nutr, 2001. 131(10): p. 2772S–2774S.

    PubMed  CAS  Google Scholar 

  • Miettinen, T.A. and H. Gylling, Cholesterol absorption efficiency and sterol metabolism in obesity. Atherosclerosis, 2000. 153(1): p. 241–8.

    PubMed  CAS  Google Scholar 

  • Simonen, P.P., H.K. Gylling, and T.A. Miettinen, Diabetes contributes to cholesterol metabolism regardless of obesity. Diabetes Care, 2002. 25(9): p. 1511–5.

    PubMed  CAS  Google Scholar 

  • Pihlajamaki, J., et al., Insulin resistance is associated with increased cholesterol synthesis and decreased cholesterol absorption in normoglycemic men. J Lipid Res, 2004. 45(3): p. 507–12.

    PubMed  Google Scholar 

  • Mondul, A.M., et al., Association between plasma total cholesterol concentration and incident prostate cancer in the CLUE II cohort. Cancer Causes Control, 2010. 21(1): p. 61–8.

    PubMed  Google Scholar 

  • Yamada, K., et al., Relation of serum total cholesterol, serum triglycerides and fasting plasma glucose to colorectal carcinoma in situ. Int J Epidemiol, 1998. 27(5): p. 794–8.

    PubMed  CAS  Google Scholar 

  • Sako, A., et al., Hyperlipidemia is a risk factor for lymphatic metastasis in superficial esophageal carcinoma. Cancer Lett, 2004. 208(1): p. 43–9.

    PubMed  CAS  Google Scholar 

  • Tseng, T.H., et al., Promotion of colon carcinogenesis through increasing lipid peroxidation induced in rats by a high cholesterol diet. Cancer Lett, 1996. 100(1–2): p. 81–7.

    PubMed  CAS  Google Scholar 

  • Blais, L., A. Desgagne, and J. LeLorier, 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors and the risk of cancer: a nested case-control study. Arch Intern Med, 2000. 160(15): p. 2363–8.

    PubMed  CAS  Google Scholar 

  • Coogan, P.F., et al., Statin use and the risk of breast and prostate cancer. Epidemiology, 2002. 13(3): p. 262–7.

    PubMed  Google Scholar 

  • Graaf, M.R., et al., Effects of statins and farnesyltransferase inhibitors on the development and progression of cancer. Cancer Treat Rev, 2004. 30(7): p. 609–41.

    PubMed  CAS  Google Scholar 

  • Kaye, J.A., et al., Statin use, hyperlipidaemia, and the risk of breast cancer. Br J Cancer, 2002. 86(9): p. 1436–9.

    PubMed  CAS  Google Scholar 

  • Olsen, J.H., et al., Lipid-lowering medication and risk of cancer. J Clin Epidemiol, 1999. 52(2): p. 167–9.

    PubMed  CAS  Google Scholar 

  • Shannon, J., et al., Statins and prostate cancer risk: a case-control study. Am J Epidemiol, 2005. 162(4): p. 318–25.

    PubMed  Google Scholar 

  • Platz, E.A., et al., Statin drugs and risk of advanced prostate cancer. J Natl Cancer Inst, 2006. 98(24): p. 1819–25.

    PubMed  CAS  Google Scholar 

  • Feldman, B.J. and D. Feldman, The development of androgen-independent prostate cancer. Nat Rev Cancer, 2001. 1(1): p. 34–45.

    PubMed  CAS  Google Scholar 

  • Goldenberg, S.L., et al., Clinical Experience with Intermittent Androgen Suppression in Prostate Cancer: Minimum of 3 Years’ Follow-Up. Mol Urol, 1999. 3(3): p. 287–292.

    PubMed  CAS  Google Scholar 

  • Leon, C.G., et al., Alterations in cholesterol regulation contribute to the production of intratumoral androgens during progression to castration-resistant prostate cancer in a mouse xenograft model. Prostate, 2010. 70(4): p. 390–400.

    PubMed  CAS  Google Scholar 

  • Brown, M.S. and J.L. Goldstein, A receptor-mediated pathway for cholesterol homeostasis. Science, 1986. 232(4746): p. 34–47.

    PubMed  CAS  Google Scholar 

  • Calvo, D., et al., CLA-1 is an 85-kD plasma membrane glycoprotein that acts as a high-affinity receptor for both native (HDL, LDL, and VLDL) and modified (OxLDL and AcLDL) lipoproteins. Arterioscler Thromb Vasc Biol, 1997. 17(11): p. 2341–9.

    PubMed  CAS  Google Scholar 

  • Nieland, T.J., et al., Discovery of chemical inhibitors of the selective transfer of lipids mediated by the HDL receptor SR-BI. Proc Natl Acad Sci U S A, 2002. 99(24): p. 15422–7.

    PubMed  CAS  Google Scholar 

  • Cao, W.M., et al., A mutant high-density lipoprotein receptor inhibits proliferation of human breast cancer cells. Cancer Res, 2004. 64(4): p. 1515–21.

    PubMed  CAS  Google Scholar 

  • Adam, R.M., et al., Cholesterol sensitivity of endogenous and myristoylated Akt. Cancer Res, 2007. 67(13): p. 6238–46.

    PubMed  CAS  Google Scholar 

  • Mollinedo, F., et al., Selective induction of apoptosis in cancer cells by the ether lipid ET-18-OCH3 (Edelfosine): molecular structure requirements, cellular uptake, and protection by Bcl-2 and Bcl-X(L). Cancer Res, 1997. 57(7): p. 1320–8.

    PubMed  CAS  Google Scholar 

  • Gajate, C. and F. Mollinedo, Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood, 2007. 109(2): p. 711–9.

    PubMed  CAS  Google Scholar 

  • Gajate, C., et al., Intracellular triggering of Fas aggregation and recruitment of apoptotic molecules into Fas-enriched rafts in selective tumor cell apoptosis. J Exp Med, 2004. 200(3): p. 353–65.

    PubMed  CAS  Google Scholar 

  • Mollinedo, F. and C. Gajate, Lipid rafts and clusters of apoptotic signaling molecule-enriched rafts in cancer therapy. Future Oncol, 2010. 6(5): p. 811–21.

    PubMed  CAS  Google Scholar 

  • Kang, J.H., B.Y. Yu, and D.S. Youn, Relationship of serum adiponectin and resistin levels with breast cancer risk. J Korean Med Sci, 2007. 22(1): p. 117–21.

    PubMed  CAS  Google Scholar 

  • Sun, C.A., et al., Adipocytokine resistin and breast cancer risk. Breast Cancer Res Treat, 2010. 123(3): p. 869–76.

    PubMed  CAS  Google Scholar 

  • Kim, H.J., et al., Expression of resistin in the prostate and its stimulatory effect on prostate cancer cell proliferation. BJU Int, 2010.

    Google Scholar 

  • Nakajima, S., et al., Spectra of functional gastrointestinal disorders diagnosed by Rome III integrative questionnaire in a Japanese outpatient office and the impact of overlapping. J Gastroenterol Hepatol, 2010. 25 Suppl 1: p. S138–43.

    Google Scholar 

  • Nakajima, T.E., et al., Adipocytokine levels in gastric cancer patients: resistin and visfatin as biomarkers of gastric cancer. J Gastroenterol, 2009. 44(7): p. 685–90.

    PubMed  CAS  Google Scholar 

  • Wagsater, D., et al., Resistin in human colorectal cancer: increased expression independently of resistin promoter -420C > G genotype. Cancer Invest, 2008. 26(10): p. 1008–14.

    PubMed  Google Scholar 

  • Somasundar, P., et al., Differential effects of leptin on cancer in vitro. J Surg Res, 2003. 113(1): p. 50–5.

    PubMed  CAS  Google Scholar 

  • Ray, A., K.J. Nkhata, and M.P. Cleary, Effects of leptin on human breast cancer cell lines in relationship to estrogen receptor and HER2 status. Int J Oncol, 2007. 30(6): p. 1499–509.

    PubMed  CAS  Google Scholar 

  • Hu, X., et al., Leptin--a growth factor in normal and malignant breast cells and for normal mammary gland development. J Natl Cancer Inst, 2002. 94(22): p. 1704–11.

    PubMed  CAS  Google Scholar 

  • Dieudonne, M.N., et al., Leptin mediates a proliferative response in human MCF7 breast cancer cells. Biochem Biophys Res Commun, 2002. 293(1): p. 622–8.

    PubMed  CAS  Google Scholar 

  • Mauro, L., et al., Evidences that leptin up-regulates E-cadherin expression in breast cancer: effects on tumor growth and progression. Cancer Res, 2007. 67(7): p. 3412–21.

    PubMed  CAS  Google Scholar 

  • Cleary, M.P., et al., Diet-induced obesity and mammary tumor development in MMTV-neu female mice. Nutr Cancer, 2004. 50(2): p. 174–80.

    PubMed  Google Scholar 

  • Caldefie-Chezet, F., et al., Troglitazone reduces leptinemia during experimental dexamethasone-induced stress. Horm Metab Res, 2005. 37(3): p. 164–71.

    PubMed  CAS  Google Scholar 

  • Jarde, T., et al., Leptin and leptin receptor involvement in cancer development: a study on human primary breast carcinoma. Oncol Rep, 2008. 19(4): p. 905–11.

    PubMed  Google Scholar 

  • Karaduman, M., et al., Tissue leptin levels in patients with breast cancer. J BUON, 2010. 15(2): p. 369–72.

    PubMed  CAS  Google Scholar 

  • Surmacz, E., Obesity hormone leptin: a new target in breast cancer? Breast Cancer Res, 2007. 9(1): p. 301.

    PubMed  Google Scholar 

  • Melen-Mucha, G., K. Winczyk, and M. Pawlikowski, Somatostatin analogue octreotide and melatonin inhibit bromodeoxyuridine incorporation into cell nuclei and enhance apoptosis in the transplantable murine colon 38 cancer. Anticancer Res, 1998. 18(5A): p. 3615–9.

    Google Scholar 

  • Ogunwobi, O.O. and I.L. Beales, Glycine-extended gastrin stimulates proliferation and inhibits apoptosis in colon cancer cells via cyclo-oxygenase-independent pathways. Regul Pept, 2006. 134(1): p. 1–8.

    PubMed  CAS  Google Scholar 

  • Slattery, M.L., et al., Leptin and leptin receptor genotypes and colon cancer: gene-gene and gene-lifestyle interactions. Int J Cancer, 2008. 122(7): p. 1611–7.

    PubMed  CAS  Google Scholar 

  • Gade-Andavolu, R., et al., Molecular interactions of leptin and prostate cancer. Cancer J, 2006. 12(3): p. 201–6.

    PubMed  CAS  Google Scholar 

  • Mistry, T., et al., Leptin and adiponectin interact in the regulation of prostate cancer cell growth via modulation of p53 and bcl-2 expression. BJU Int, 2008. 101(10): p. 1317–22.

    PubMed  CAS  Google Scholar 

  • Huang, C.Y., et al., Leptin increases motility and integrin up-regulation in human prostate cancer cells. J Cell Physiol, 2010.

    Google Scholar 

  • Singh, S.K., et al., Serum leptin: A marker of prostate cancer irrespective of obesity. Cancer Biomark, 2010. 7(1): p. 11–5.

    PubMed  CAS  Google Scholar 

  • Nkhata, K.J., et al., Effects of adiponectin and leptin co-treatment on human breast cancer cell growth. Oncol Rep, 2009. 21(6): p. 1611–9.

    PubMed  CAS  Google Scholar 

  • Chen, X. and Y. Wang, Adiponectin and breast cancer. Med Oncol, 2010.

    Google Scholar 

  • Jarde, T., et al., Molecular mechanisms of leptin and adiponectin in breast cancer. Eur J Cancer, 2010.

    Google Scholar 

  • Lopez Fontana, C.M., et al., [Influence of leptin and adiponectin on prostate cancer]. Arch Esp Urol, 2009. 62(2): p. 103–8.

    Google Scholar 

  • Kim, A.Y., et al., Adiponectin represses colon cancer cell proliferation via AdipoR1- and -R2-mediated AMPK activation. Mol Endocrinol, 2010. 24(7): p. 1441–52.

    PubMed  CAS  Google Scholar 

  • Mocellin, S. and D. Nitti, TNF and cancer: the two sides of the coin. Front Biosci, 2008. 13: p. 2774–83.

    PubMed  CAS  Google Scholar 

  • Bertazza, L. and S. Mocellin, The dual role of tumor necrosis factor (TNF) in cancer biology. Curr Med Chem, 2010. 17(29): p. 3337–3352.

    PubMed  CAS  Google Scholar 

  • Alcover, J., et al., Prognostic value of IL-6 in localized prostatic cancer. Anticancer Res, 2010. 30(10): p. 4369–72.

    PubMed  Google Scholar 

  • Asgeirsson, K.S., et al., The effects of IL-6 on cell adhesion and e-cadherin expression in breast cancer. Cytokine, 1998. 10(9): p. 720–8.

    PubMed  CAS  Google Scholar 

  • Ashizawa, T., et al., Study of interleukin-6 in the spread of colorectal cancer: the diagnostic ­significance of IL-6. Acta Med Okayama, 2006. 60(6): p. 325–30.

    PubMed  CAS  Google Scholar 

  • Ali, S. and R.C. Coombes, Estrogen receptor alpha in human breast cancer: occurrence and ­significance. J Mammary Gland Biol Neoplasia, 2000. 5(3): p. 271–81.

    PubMed  CAS  Google Scholar 

  • Gaforio, J.J., et al., Detection of breast cancer cells in the peripheral blood is positively correlated with estrogen-receptor status and predicts for poor prognosis. Int J Cancer, 2003. 107(6): p. 984–90.

    PubMed  CAS  Google Scholar 

  • Kirilovas, D., et al., Conversion of circulating estrone sulfate to 17beta-estradiol by ovarian tumor tissue: a possible mechanism behind elevated circulating concentrations of 17beta-estradiol in postmenopausal women with ovarian tumors. Gynecol Endocrinol, 2007. 23(1): p. 25–8.

    PubMed  CAS  Google Scholar 

  • Means, G.D., et al., Structural analysis of the gene encoding human aromatase cytochrome P-450, the enzyme responsible for estrogen biosynthesis. J Biol Chem, 1989. 264(32): p. 19385–91.

    PubMed  CAS  Google Scholar 

  • Dos Santos, E., et al., Effects of 17beta-estradiol on preadipocyte proliferation in human adipose tissue: Involvement of IGF1-R signaling. Horm Metab Res, 2010. 42(7): p. 514–20.

    PubMed  Google Scholar 

  • Borkowski, A., et al., Estrone to estradiol conversion by blood mononuclear cells in normal ­subjects and in patients with mammary and nonmammary carcinomas. Cancer Res, 1978. 38(7): p. 2174–9.

    PubMed  CAS  Google Scholar 

  • Hankinson, S.E., et al., Plasma sex steroid hormone levels and risk of breast cancer in ­postmenopausal women. J Natl Cancer Inst, 1998. 90(17): p. 1292–9.

    PubMed  CAS  Google Scholar 

  • McTiernan, A., et al., Recreational physical activity and the risk of breast cancer in postmenopausal women: the Women’s Health Initiative Cohort Study. JAMA, 2003. 290(10): p. 1331–6.

    PubMed  CAS  Google Scholar 

  • Castracane, V.D., et al., Interrelationships of serum estradiol, estrone, and estrone sulfate, adiposity, biochemical bone markers, and leptin in post-menopausal women. Maturitas, 2006. 53(2): p. 217–25.

    PubMed  CAS  Google Scholar 

  • McTiernan, A., et al., Relation of BMI and physical activity to sex hormones in postmenopausal women. Obesity (Silver Spring), 2006. 14(9): p. 1662–77.

    Google Scholar 

  • Rinaldi, S., et al., IGF-I, IGFBP-3 and breast cancer risk in women: The European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer, 2006. 13(2): p. 593–605.

    PubMed  CAS  Google Scholar 

  • Rose, D.P. and L. Vona-Davis, Interaction between menopausal status and obesity in affecting breast cancer risk. Maturitas, 2010. 66(1): p. 33–8.

    PubMed  Google Scholar 

  • Purohit, A. and M.J. Reed, Regulation of estrogen synthesis in postmenopausal women. Steroids, 2002. 67(12): p. 979–83.

    PubMed  CAS  Google Scholar 

  • Zhao, Y., C.R. Mendelson, and E.R. Simpson, Characterization of the sequences of the human CYP19 (aromatase) gene that mediate regulation by glucocorticoids in adipose stromal cells and fetal hepatocytes. Mol Endocrinol, 1995. 9(3): p. 340–9.

    PubMed  CAS  Google Scholar 

  • Mouridsen, H.T., et al., Use of aromatase inhibitors and bisphosphonates as an anticancer therapy in postmenopausal breast cancer. Expert Rev Anticancer Ther, 2010.

    Google Scholar 

  • Bowker, S.L., et al., Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin: Response to Farooki and Schneider. Diabetes Care, 2006. 29(8): p. 1990–1.

    PubMed  Google Scholar 

  • Currie, C.J., The longest ever randomised controlled trial of insulin glargine: study design and HbA(1c) findings. Diabetologia, 2009. 52(10): p. 2234–5; author reply 2236–9.

    Google Scholar 

  • Yang, Y.X., S. Hennessy, and J.D. Lewis, Insulin therapy and colorectal cancer risk among type 2 diabetes mellitus patients. Gastroenterology, 2004. 127(4): p. 1044–50.

    PubMed  CAS  Google Scholar 

  • Stammberger, I., et al., Evaluation of the carcinogenic potential of insulin glargine (LANTUS) in rats and mice. Int J Toxicol, 2002. 21(3): p. 171–9.

    PubMed  CAS  Google Scholar 

  • Kurtzhals, P., et al., Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes, 2000. 49(6): p. 999–1005.

    PubMed  CAS  Google Scholar 

  • Mayer, D., A. Shukla, and H. Enzmann, Proliferative effects of insulin analogues on mammary epithelial cells. Arch Physiol Biochem, 2008. 114(1): p. 38–44.

    PubMed  CAS  Google Scholar 

  • Weinstein, D., et al., Insulin analogues display IGF-I-like mitogenic and anti-apoptotic activities in cultured cancer cells. Diabetes Metab Res Rev, 2009. 25(1): p. 41–9.

    PubMed  CAS  Google Scholar 

  • Hemkens, L.G., et al., Insulin glargine and cancer. Lancet, 2009. 374(9703): p. 1743–4; author reply 1744.

    Google Scholar 

  • de Miguel-Yanes, J.M. and J.B. Meigs, When “flawed” translates into “flood”: the unproven ­association between cancer incidence and glargine insulin therapy. Oncologist, 2009. 14(12): p. 1175–7.

    PubMed  Google Scholar 

  • Colhoun, H.M., Use of insulin glargine and cancer incidence in Scotland: a study from the Scottish Diabetes Research Network Epidemiology Group. Diabetologia, 2009. 52(9): p. 1755–65.

    PubMed  CAS  Google Scholar 

  • Jonasson, J.M., et al., Insulin glargine use and short-term incidence of malignancies-a population-based follow-up study in Sweden. Diabetologia, 2009. 52(9): p. 1745–54.

    PubMed  CAS  Google Scholar 

  • Correia, S., et al., Metformin protects the brain against the oxidative imbalance promoted by type 2 diabetes. Med Chem, 2008. 4(4): p. 358–64.

    PubMed  CAS  Google Scholar 

  • Cazzaniga, M., et al., Is it time to test metformin in breast cancer clinical trials? Cancer Epidemiol Biomarkers Prev, 2009. 18(3): p. 701–5.

    PubMed  CAS  Google Scholar 

  • Zakikhani, M., et al., Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res, 2006. 66(21): p. 10269–73.

    PubMed  CAS  Google Scholar 

  • Zakikhani, M., et al., The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase. Cancer Prev Res (Phila), 2008. 1(5): p. 369–75.

    Google Scholar 

  • Hirsch, I.B., Metformin added to insulin therapy in poorly controlled type 2 diabetes. Diabetes Care, 1999. 22(5): p. 854.

    PubMed  CAS  Google Scholar 

  • Ben Sahra, I., et al., The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene, 2008. 27(25): p. 3576–86.

    Google Scholar 

  • Anisimov, V.N., et al., Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp Gerontol, 2005. 40(8–9): p. 685–93.

    PubMed  CAS  Google Scholar 

  • Buzzai, M., et al., Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res, 2007. 67(14): p. 6745–52.

    PubMed  CAS  Google Scholar 

  • Ben Sahra, I., et al., Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol Cancer Ther, 2010. 9(5): p. 1092–9.

    Google Scholar 

  • Evans, J.M., et al., Metformin and reduced risk of cancer in diabetic patients. BMJ, 2005. 330(7503): p. 1304–5.

    PubMed  Google Scholar 

  • Goodwin, S.S., et al., Breast cancer screening in Rockland County, New York: a survey of attitudes and behaviors. Ethn Dis, 2006. 16(2): p. 428–34.

    PubMed  Google Scholar 

  • Goodwin, P.J., et al., Insulin-lowering effects of metformin in women with early breast cancer. Clin Breast Cancer, 2008. 8(6): p. 501–5.

    PubMed  CAS  Google Scholar 

  • Libby, G., et al., New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care, 2009. 32(9): p. 1620–5.

    PubMed  CAS  Google Scholar 

  • Landman, G.W., et al., Increased cancer mortality in type 2 diabetes (ZODIAC-3). Anticancer Res, 2008. 28(2B): p. 1373–5.

    Google Scholar 

  • Jiralerspong, S., et al., Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol, 2009. 27(20): p. 3297–302.

    PubMed  CAS  Google Scholar 

  • Bodmer, M., et al., Long-term metformin use is associated with decreased risk of breast cancer. Diabetes Care, 2010. 33(6): p. 1304–8.

    PubMed  CAS  Google Scholar 

  • Liu, B., et al., Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle, 2009. 8(13): p. 2031–40.

    PubMed  CAS  Google Scholar 

  • Vazquez-Martin, A., et al., The anti-diabetic drug metformin suppresses self-renewal and ­proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells. Breast Cancer Res Treat, 2010.

    Google Scholar 

  • Gupta, R., P. Vyas, and T. Enver, Molecular targeting of cancer stem cells. Cell Stem Cell, 2009. 5(2): p. 125–6.

    PubMed  CAS  Google Scholar 

  • Nguyen, N.P., et al., Molecular biology of breast cancer stem cells: potential clinical applications. Cancer Treat Rev, 2010. 36(6): p. 485–91.

    PubMed  CAS  Google Scholar 

  • Oliveras-Ferraros, C., et al., Dynamic emergence of the mesenchymal CD44(pos)CD24(neg/low) phenotype in HER2-gene amplified breast cancer cells with de novo resistance to trastuzumab (Herceptin). Biochem Biophys Res Commun, 2010. 397(1): p. 27–33.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Angulo, A.M. and F. Meric-Bernstam, Metformin: a therapeutic opportunity in breast cancer. Clin Cancer Res, 2010. 16(6): p. 1695–700.

    PubMed  CAS  Google Scholar 

  • Wysocki, P.J. and B. Wierusz-Wysocka, Obesity, hyperinsulinemia and breast cancer: novel ­targets and a novel role for metformin. Expert Rev Mol Diagn, 2010. 10(4): p. 509–19.

    PubMed  CAS  Google Scholar 

  • Sarraf, P., et al., Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med, 1998. 4(9): p. 1046–52.

    PubMed  CAS  Google Scholar 

  • Mueller, E., et al., Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer. Proc Natl Acad Sci USA, 2000. 97(20): p. 10990–5.

    PubMed  CAS  Google Scholar 

  • Elstner, E., et al., Ligands for peroxisome proliferator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci USA, 1998. 95(15): p. 8806–11.

    PubMed  CAS  Google Scholar 

  • Saez, E., et al., PPAR gamma signaling exacerbates mammary gland tumor development. Genes Dev, 2004. 18(5): p. 528–40.

    PubMed  CAS  Google Scholar 

  • Lefebvre, A.M., et al., Activation of the peroxisome proliferator-activated receptor gamma ­promotes the development of colon tumors in C57BL/6J-APCMin/+ mice. Nat Med, 1998. 4(9): p. 1053–7.

    PubMed  CAS  Google Scholar 

  • Dormandy, J.A., et al., Secondary prevention of macrovascular events in patients with type 2 ­diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet, 2005. 366(9493): p. 1279–89.

    PubMed  CAS  Google Scholar 

  • Piccinni et al., Assessing the association of pioglitazone use and bladder cancer through drug adverse event reporting. Diabetes Care, 2011. (34): p. 1369–71.

    Google Scholar 

  • Okumura, T., Mechanisms by which thiazolidinediones induce anti-cancer effects in cancers in digestive organs. J Gastroenterol, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek LeRoith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ferguson, R.D., LeRoith, D. (2012). Obesity, Type 2 Diabetes and Cancer. In: LeRoith, D. (eds) Insulin-like Growth Factors and Cancer. Cancer Drug Discovery and Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0598-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0598-6_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0597-9

  • Online ISBN: 978-1-4614-0598-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics