Skip to main content

Transport of Novel State Variables

  • Chapter
  • First Online:
Graphene Nanoelectronics
  • 3473 Accesses

Abstract

In this chapter, a framework is developed for comparison of different post-CMOS interconnect technologies using physical models of transport mechanisms for these novel interconnects. In the first part of the chapter, an overview of CMOS interconnects is provided with an emphasis on the impact of scaling on the performance and energy dissipation of local (<100 gate pitches) interconnects. The second part of the chapter deals with the delay modeling of novel interconnects. The upper bound on the performance of novel interconnects is benchmarked against their conventional CMOS counterparts. A set of guidelines is derived at the device and circuit level for post-CMOS technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. I. Bourianoff, “The future of nanocomputing,” IEEE Computer Society, 2003.

    Google Scholar 

  2. V. V. Zhirnov, R. K. Cavin-III, J. A. Hutchby, and G. I. Bourianoff, “Limits to binary logic switch scaling—a gedanken model,” Proceedings of the IEEE, vol. 91, no. 11, 2003.

    Google Scholar 

  3. R. K. Cavin, V. V. Zhirnov, D. J. C. Herr, A. Alba, and J. A. Hutchby, “Research directions and challenges in nanoelectronics,” Journal of Nanoparticle Research, vol. 8, no. 6, 2006.

    Google Scholar 

  4. K. Galatsis, A. Khitun, R. Ostroumov, K. L. Wang, W. R. Dichtel, E. Plummer, J. F. Stoddart, J. I. Zink, J. Y. Lee, Y. H. Xie, and K. W. Kim, “Alternate state variables for emerging nanoelectronic devices,” IEEE Transactions on Nanotechnology, vol. 8, no. 1, 2009.

    Google Scholar 

  5. N. Tombros, C. Josza, M. Popinciuc, H. Jonkman, and B. V. Wees, “Electronic spin transport and spin precision in single graphene layers at room temperature,” Nature, vol. 448, 2007.

    Google Scholar 

  6. J. Su and A. MacDonald, “How to make a graphene bilayer excitons condensate flow,” Nature Physics, vol. 4, August 2008.

    Google Scholar 

  7. F. Miao, S. Wijeratne, Y. Zhang, U. Coskun, W. Bao, and C. Lau, “Phase-coherent transport in graphene quantum billiards,” Science, vol. 317, September 2007.

    Google Scholar 

  8. P. S. Jose, E. Prada, E. McCann, and H. Schomerus, “Pseudospin valve in bilayer graphene: Towards graphene-based pseudospintronics,” arXiv: 0901.0889v2.

    Google Scholar 

  9. N. Magen, A. Kolondy, U. Weiser, and N. Shamir, “Interconnect-power dissipation in a micropro- cessor,” SLIP, 2004.

    Google Scholar 

  10. ITRS 2008 Update on PIDS and Interconnects. Website: http://www.itrs.net/Links/2008ITRS/Home2008.htm.

  11. J. Meindl, J. Davis, P. Zarkesh-Ha, C. Patel, K. Martin, and P. Kohl, “Interconnect opportunities for gigascale integration,” IBM Journal of Research and Development, vol. 46, no. 2/3, March/May 2002.

    Google Scholar 

  12. P. Andricacos, “Copper-on-chip-interconnections, a breakthrough in electrodeposition to make better chips,” The Electrochemical Society Interface, pp. 32–37, 1999.

    Google Scholar 

  13. P. Andricacos, C. Uzoh, J. Dukovic, J. Horkans, and H. Deligianni, “Damascene copper electro- plating for chip interconnections,” IBM Journal of Research and Development, vol. 42, no. 5, pp. 567–574, Sept. 1998.

    Google Scholar 

  14. K. Saraswat, “Interconnections: Copper and low k dielectrics,” Stanford University. online: www.stanford.edu/class/ee311/NOTES/

  15. G. Lopez, “The impact of interconnect process variations and size effects for gigascale integration,” 2009.

    Google Scholar 

  16. J. A. Davis, R. Venkatesan, A. Kaloyeros, M. Beylansky, S. J. Souri, K. Banerjee, K. C. Saraswat, A. Rahman, R. Reif, and J. D. Meindl, “Interconnect limits on gigascale integration (gsi) in the 21st century,” Proceedings of the IEEE, vol. 89, no. 3, March 2001.

    Google Scholar 

  17. A. Mayadas, M. Shatzkes, and J. Janak, “Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces”,” Applied Physics Letters, vol. 14, no. 11, 1969.

    Google Scholar 

  18. E. Sondheimer, “Mean free path of electrons in metals,” Advances In Physics (Quarterly Supple- ment of Philosophical Magazine), vol. 1, no. 1, pp. 1–42, 1952.

    Google Scholar 

  19. S. Rakheja and A. Naeemi, “Interconnects for Novel State Variables: Performance Modeling and Device and Circuit Implications,” IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2711–2718, Oct. 2010.

    Article  Google Scholar 

  20. J. Hu, X. Ruan, and Y. Chen, “Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study,” NanoLetters, vol. 9, no. 7, 2009.

    Google Scholar 

  21. R. Dillenschneider and J.E.Moore, “Exciton formation in graphene bilayer,” Physical Review B, vol. 78, 2008.

    Google Scholar 

  22. D. E. Nikonov, G. I. Bourianoff, and T. Ghani, “Proposal of a spin torque majority gate logic.” online: http://arxiv.org/abs/1006.4663

  23. B. Behin-Aein, D. Datta, S. Salahuddin, and S. Datta, “Proposal for an all-spin logic device with built-in memory,” Nature Nanotechnology, vol. 5, February 2010.

    Google Scholar 

  24. H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI, 1st ed. Springer, 1990.

    Google Scholar 

  25. R. Skeel and M. Berzins, “A method for the spatial discretization of parabolic equations in one space variable,” SIAM Journal of Scientific and Statistical Computing, vol. 11, pp. 1–32, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  26. L. Wang and L. Baowen, “Thermal logic gates: Computation with phonons,” Physics Review Letters, vol. 9, 2007.

    Google Scholar 

  27. D. Widder, The Heat Equation (Pure and Applied Mathematics), Academic Press, 1975.

    Google Scholar 

  28. L. Baowen, L. Wang, and G. Casati, “Negative differential thermal resistance and thermal tran- sistor,” Applied Physics Letters, vol. 88, 2006.

    Google Scholar 

  29. D. Nika, E. P. Pokatilov, A. Askerov, and A. Balandin, “Phonon thermal conduction in graphene: Role of umklapp and edge roughness scattering,” Physical Review B, vol. 79, 2009.

    Google Scholar 

  30. J. Hone, M. Whitney, C. Piskoti, and A. Zettl, “Thermal conductivity of single-walled carbon nanotubes,” Physical Review B, vol. 59, no. 4, pp. 2514–2516, 1999.

    Article  Google Scholar 

  31. S. Hepplestone, A. Ciavarella, C. Janke, and G. Srivastava, “Size and temperature dependence of the specific heat capacity of carbon nanotubes,” in Proceedings of the 23 rd European Conference on Surface Science, vol. 600, no. 18, September 2006, pp. 3633–3636.

    Google Scholar 

  32. A. Naeemi and J. Meindl, “Performance benchmarking for graphene nanoribbons, carbon nanotubes and Cu interconnects,” International Interconnect Technology Conference, 2008.

    Google Scholar 

  33. A. Naeemi and J. D. Meindl, “Design and performance modeling for single-wall carbon nanotubes as local, semi-global, and global interconnects in gigascale integrated systems,” IEEE Transactions on Electron Devices, vol. 54, pp. 26–37, 2007.

    Article  Google Scholar 

  34. S. Rakheja and A. Naeemi, “Modeling Interconnects for Post-CMOS Devices and Comparison With Copper Interconnects,” IEEE Trans. Electron Devices, vol. 58, no. 5, pp. 1319–1328, May 2011.

    Article  Google Scholar 

  35. S. Datta, Quantum Transport: Atom to Transistor, 1st ed., Cambridge University Press, 2005.

    Google Scholar 

  36. A. Khitun, M. Bao, Y. Wu, J. Y. Kim, A. Hong, A. Jacob, K. Galatsis, and K. Wang, “Logic devices with spin wave buses - an approach to scalable magneto-electric circuitry,” Material Research Society Symposium, vol. 1067, 2008.

    Google Scholar 

  37. A. Khitun, D. E. Nikonov, B. Mingqiang,, K. Galatsis, and L. K. Wang, “Feasibility study of logic circuits with a spin wave bus,” Nanotechnology, vol. 18, no. 46, 2007.

    Google Scholar 

  38. M. Cottam, Linear and non-linear spin waves in magnetic films and superlattices. World Scien- tific, 1994.

    Google Scholar 

  39. R. de Sousa and J. E. Moore, “Multiferroic materials for spin-based logic devices,” arXiv: 0804.1539v1.

    Google Scholar 

  40. R. DeSousa and J.E.Moore, “Multiferroic materials for spin-based logic devices,” Journal of Na- noelectronics and Optoelectronics, vol. 3, no. 77, 2008.

    Google Scholar 

  41. N. Pyka, L. Pintschovious, and A. Rumiantsev, “High energy spin dynamics of la2cuo4 and la1.9 sr0.1cuo4,” Z.Phys. B-Condensed Matter, vol. 82, 1991.

    Google Scholar 

  42. D. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proceedings of the IEEE, vol. 97, no. 9, pp. 1166–1185, July 2009.

    Article  Google Scholar 

  43. L. Pavesi and G. Guillot, Optical Interconnects: The Silicon Approach, 1st ed., Springer, 2006.

    Google Scholar 

  44. S. A. Maeir, M. L. Brongersma, P. Kik, S. Meltzer, A. Requicha, and H. A. Atwater, “Plasmonics: A route to nanoscale optical devices,” Advanced Materials, vol. 13, 2001.

    Google Scholar 

  45. J. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: A comparison of latency, cross-talk and energy costs,” Optics Express, vol. 15, 2007.

    Google Scholar 

  46. W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, August 2003.

    Google Scholar 

  47. A. Khitun, M. Bao, and K. L. Wang, “Spin wave magnetic nanofabric: A new approach to spin-based logic circuitry,” IEEE Transactions on Magnetics, vol. 44, no. 9, September 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaloo Rakheja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rakheja, S., Naeemi, A. (2012). Transport of Novel State Variables. In: Murali, R. (eds) Graphene Nanoelectronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0548-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0548-1_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0547-4

  • Online ISBN: 978-1-4614-0548-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics