Skip to main content

Electronic Transport in Graphene

  • Chapter
  • First Online:
  • 3922 Accesses

Abstract

This chapter provides an experimental overview of the electrical transport properties of graphene and graphene nanoribbons, focusing on phenomena related to electronics applications. Section 2.1 gives a brief description of the band structure. Section 2.2 discusses the effect of various scattering mechanisms in 2D sheets and nanoribbons and compares the characteristics of exfoliated and synthesized graphene. The physics of high-bias transport in graphene field effect transistors is described in Sect. 2.3. Section 2.4 gives a brief summary and outlook.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wallace, P. The Band Theory of Graphite. Physical Review 71, 622–634 (1947).

    Article  MATH  Google Scholar 

  2. Bostwick, A., Ohta, T., Seyller, T., Horn, K. & Rotenberg, E. Quasiparticle dynamics in graphene. Nature Physics 3, 36–40 (2006).

    Article  Google Scholar 

  3. Castro Neto, A., Guinea, F., Peres, N., Novoselov, K. & Geim, A. The electronic properties of graphene. Reviews of Modern Physics 81, 109–162 (2009).

    Article  Google Scholar 

  4. Park, C., Giustino, F., Spataru, C., Cohen, M. & Louie, S. Angle-resolved photoemission spectra of graphene from first-principles calculations. Nano letters 9, 4234–4239 (2009).

    Article  Google Scholar 

  5. Borghi, G., Polini, M., Asgari, R. & MacDonald, A. Fermi velocity enhancement in monolayer and bilayer graphene. Solid State Communications 149, 1117–1122 (2009).

    Article  Google Scholar 

  6. Peres, N. Colloquium: The transport properties of graphene: An introduction. Reviews of Modern Physics 82, 2673 (2010).

    Article  Google Scholar 

  7. Brey, L. & Fertig, H. Electronic states of graphene nanoribbons studied with the Dirac equation. Physical Review B 73, 235411 (2006).

    Article  Google Scholar 

  8. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M.S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B 54, 17954–17961 (1996).

    Article  Google Scholar 

  9. Son, Y., Cohen, M. & Louie, S. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    Article  Google Scholar 

  10. Barone, V., Hod, O. & Scuseria, G. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6, 2748–2754 (2006).

    Article  Google Scholar 

  11. Ando, T., Fowler, A. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

    Article  Google Scholar 

  12. Piscanec, S., Lazzeri, M., Mauri, F. & Ferrari, A. Optical phonons of graphene and nanotubes. The European Physical Journal-Special Topics 148, 159–170 (2007).

    Article  Google Scholar 

  13. Charlier, J.C., Eklund, P., Zhu, J. & Ferrari, A. Electron and phonon properties of graphene: Their relationship with carbon nanotubes. Carbon Nanotubes, 673–709 (2008).

    Google Scholar 

  14. Hwang, E. & Das Sarma, S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Physical Review B 77, 115449 (2008).

    Article  Google Scholar 

  15. Efetov, D.K. & Kim, P. Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities. Physical Review Letters 105, 256805 (2010).

    Article  Google Scholar 

  16. Chen, J., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology 3, 206–209 (2008).

    Article  Google Scholar 

  17. Zou, K., Hong, X., Keefer, D. & Zhu, J. Deposition of high-quality HfO2 on graphene and the effect of remote oxide phonon scattering. Physical Review Letters 105, 126601 (2010).

    Article  Google Scholar 

  18. Fischetti, M., Neumayer, D. & Cartier, E. Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-kappa insulator: The role of remote phonon scattering. Journal of Applied Physics 90, 4587–4608 (2001).

    Article  Google Scholar 

  19. Fratini, S. & Guinea, F. Substrate-limited electron dynamics in graphene. Physical Review B 77, 195415 (2008).

    Article  Google Scholar 

  20. Deal, B. The current understanding of charges in the thermally oxidized silicon structure. Journal of the Electrochemical Society 121, 198C (1974).

    Article  Google Scholar 

  21. Zhuravlev, L. The surface chemistry of amorphous silica. Zhuravlev model. Colloids and Surfaces A: Physicochemical and Engineering Aspects 173, 1–38 (2000).

    Article  Google Scholar 

  22. Romero, H.E. et al. n-Type behavior of graphene supported on Si/SiO(2) substrates. ACS NANO 2, 2037–44 (2008).

    Article  Google Scholar 

  23. Kim, W. et al. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett 3, 193–198 (2003).

    Article  Google Scholar 

  24. Aguirre, C. et al. The Role of the Oxygen/Water Redox Couple in Suppressing Electron Conduction in Field-Effect Transistors. Adv. Mater. 21, 3087–3091 (2009).

    Article  Google Scholar 

  25. Adam, S., Hwang, E., Galitski, V. & Das Sarma, S. A self-consistent theory for graphene transport. Proceedings of the National Academy of Sciences 104, 18392 (2007).

    Article  Google Scholar 

  26. Hwang, E., Adam, S. & Das Sarma, S. Carrier transport in two-dimensional graphene layers. Physical Review Letters 98, 186806 (2007).

    Article  Google Scholar 

  27. Ando, T. Screening effect and impurity scattering in monolayer graphene. Journal of the Physical Society of Japan 75, 074716 (2006).

    Google Scholar 

  28. Nomura, K. & MacDonald, A. Quantum transport of massless dirac fermions. Physical Review Letters 98, 076602 (2007).

    Google Scholar 

  29. Hong, X., Zou, K. & Zhu, J. Quantum scattering time and its implications on scattering sources in graphene. Physical Review B 80, 241415 (2009).

    Article  Google Scholar 

  30. Chen, J. et al. Charged-impurity scattering in graphene. Nature Physics 4, 377–381 (2008).

    Article  Google Scholar 

  31. Shon, N.H. & Ando, T. Quantum transport in two-dimensional graphite system. Journal of the Physical Society of Japan 67, 2421–2429 (1998).

    Article  Google Scholar 

  32. Monteverde, M. et al. Transport and Elastic Scattering Times as Probes of the Nature of Impurity Scattering in Single-Layer and Bilayer Graphene. Physical Review Letters 104, 126801 (2010).

    Article  Google Scholar 

  33. Dean, C. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology 5, 722–726 (2010).

    Article  Google Scholar 

  34. Bolotin, K. et al. Ultrahigh electron mobility in suspended graphene. Solid State Communications 146, 351–355 (2008).

    Article  Google Scholar 

  35. Du, X., Skachko, I., Barker, A. & Andrei, E.Y. Approaching ballistic transport in suspended graphene. Nature Nanotechnology 3, 491–495 (2008).

    Article  Google Scholar 

  36. Zhang, Y., Brar, V., Girit, C., Zettl, A. & Crommie, M. Origin of spatial charge inhomogeneity in graphene. Nature Physics 5, 722–726 (2009).

    Article  Google Scholar 

  37. Deshpande, A., Bao, W., Miao, F., Lau, C. & LeRoy, B. Spatially resolved spectroscopy of monolayer graphene on SiO2. Physical Review B 79, 205411 (2009).

    Article  Google Scholar 

  38. Stolyarova, E. et al. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proceedings of the National Academy of Sciences 104, 9209 (2007).

    Article  Google Scholar 

  39. Stauber, T., Peres, N. & Guinea, F. Electronic transport in graphene: A semiclassical approach including midgap states. Phys. Rev. B 76, 205423 (2007).

    Article  Google Scholar 

  40. Wehling, T.O., Katsnelson, M.I. & Lichtenstein, A.I. Adsorbates on graphene: Impurity states and electron scattering. Chem Phys Lett 476, 125–134 (2009).

    Article  Google Scholar 

  41. Chen, J.-H., Cullen, W., Jang, C., Fuhrer, M. & Williams, E. Defect Scattering in Graphene. Phys. Rev. Lett. 102, 236805 (2009).

    Article  Google Scholar 

  42. Ni, Z. et al. On resonant scatterers as a factor limiting carrier mobility in graphene. Nano letters 10, 3868–3872 (2010).

    Article  Google Scholar 

  43. Hong, X., Cheng, S.-H., Herding, C. & Zhu, J. Colossal negative magnetoresistance in dilute fluorinated graphene. Phys. Rev. B 83, 085410 (2011).

    Article  Google Scholar 

  44. Lucchese, M. et al. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010).

    Article  Google Scholar 

  45. Katsnelson, M. & Geim, A. Electron scattering on microscopic corrugations in graphene. Philosophical Transactions A 366, 195 (2008).

    Article  Google Scholar 

  46. Geringer, V. et al. Intrinsic and extrinsic corrugation of monolayer graphene deposited on SiO2. Physical Review Letters 102, 076102 (2009).

    Article  Google Scholar 

  47. Cullen, W.G. et al. High-Fidelity Conformation of Graphene to SiO2 Topographic Features. Phys Rev Lett 105, 215504 (2010).

    Article  Google Scholar 

  48. Meyer, J.C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    Article  Google Scholar 

  49. Lui, C., Liu, L., Mak, K., Flynn, G. & Heinz, T. Ultraflat graphene. Nature 462, 339 (2009).

    Google Scholar 

  50. Bao, W. et al. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nature nanotechnology 4, 562–566 (2009).

    Article  Google Scholar 

  51. Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Materials 6, 652–655 (2007).

    Article  Google Scholar 

  52. Lohmann, T., Von Klitzing, K. & Smet, J. Four-Terminal Magneto-Transport in Graphene pn Junctions Created by Spatially Selective Doping. Nano letters 9, 1973–1979 (2009).

    Article  Google Scholar 

  53. Wei, D. et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano letters 9, 1752–1758 (2009).

    Article  Google Scholar 

  54. Pi, K. et al. Electronic doping and scattering by transition metals on graphene. Physical Review B 80, 075406 (2009).

    Article  Google Scholar 

  55. Wehling, T. et al. Molecular doping of graphene. Nano Lett 8, 173-177 (2008).

    Article  Google Scholar 

  56. Leenaerts, O., Partoens, B. & Peeters, F. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Physical Review B 77, 125416 (2008).

    Article  Google Scholar 

  57. Chen, W., Chen, S., Qi, D.C., Gao, X.Y. & Wee, A.T.S. Surface transfer p-type doping of epitaxial graphene. Journal of the American Chemical Society 129, 10418–10422 (2007).

    Article  Google Scholar 

  58. Choi, J., Lee, H., Kim, K., Kim, B. & Kim, S. Chemical Doping of Epitaxial Graphene by Organic Free Radicals. The Journal of Physical Chemistry Letters 1, 505–509 (2009).

    Article  Google Scholar 

  59. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology 5, 574 (2010).

    Article  Google Scholar 

  60. Park, H., Rowehl, J.A., Kim, K.K., Bulovic, V. & Kong, J. Doped graphene electrodes for organic solar cells. Nanotechnology 21, 505204 (2010).

    Article  Google Scholar 

  61. Gomez De Arco, L. et al. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS nano 4, 2865–2873 (2010).

    Article  Google Scholar 

  62. Yang, Y. & Murali, R. Impact of size effect on graphene nanoribbon transport. Electron Device Letters, IEEE 31, 237–239 (2010).

    Article  Google Scholar 

  63. Campos-Delgado, J. et al. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Letters 8, 2773–2778 (2008).

    Article  Google Scholar 

  64. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229 (2008).

    Article  Google Scholar 

  65. Kosynkin, D. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).

    Article  Google Scholar 

  66. Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    Article  Google Scholar 

  67. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2011).

    Google Scholar 

  68. Han, M., Brant, J. & Kim, P. Electron transport in disordered graphene nanoribbons. Physical review letters 104, 056801 (2010).

    Article  Google Scholar 

  69. Gallagher, P., Todd, K. & Goldhaber-Gordon, D. Disorder-induced gap behavior in graphene nanoribbons. Physical Review B 81, 115409 (2010).

    Article  Google Scholar 

  70. Stampfer, C. et al. Energy gaps in etched graphene nanoribbons. Phys Rev Lett 102, 056403 (2009).

    Article  Google Scholar 

  71. Han, M.Y., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Physical Review Letters 98, 206805 (2007).

    Article  Google Scholar 

  72. Evaldsson, M., Zozoulenko, I.V., Xu, H. & Heinzel, T. Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Physical Review B 78, 161407 (2008).

    Article  Google Scholar 

  73. Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature physics 4, 144–148 (2008).

    Article  Google Scholar 

  74. Sols, F., Guinea, F. & Neto, A.H.C. Coulomb blockade in graphene nanoribbons. Physical Review Letters 99, 166803 (2007).

    Article  Google Scholar 

  75. Mucciolo, E.R., Castro Neto, A. & Lewenkopf, C.H. Conductance quantization and transport gaps in disordered graphene nanoribbons. Physical Review B 79, 075407 (2009).

    Article  Google Scholar 

  76. Querlioz, D. et al. Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder. Applied Physics Letters 92, 042108 (2008).

    Article  Google Scholar 

  77. Martin, I. & Blanter, Y.M. Transport in disordered graphene nanoribbons. Physical Review B 79, 235132 (2009).

    Article  Google Scholar 

  78. Adam, S., Cho, S., Fuhrer, M. & Das Sarma, S. Density inhomogeneity driven percolation metal-insulator transition and dimensional crossover in graphene nanoribbons. Physical Review Letters 101, 046404 (2008).

    Article  Google Scholar 

  79. Zou, K. & Zhu, J. Transport in gapped bilayer graphene: the role of potential fluctuations. Physical Review B 82, 081407 (2010).

    Article  Google Scholar 

  80. Taychatanapat, T. & Jarillo-Herrero, P. Electronic Transport in Dual-Gated Bilayer Graphene at Large Displacement Fields. Physical Review Letters 105, 166601 (2010).

    Article  Google Scholar 

  81. Yan, J. & Fuhrer, M.S. Charge Transport in Dual Gated Bilayer Graphene with Corbino Geometry. Nano Letters 10, 4521–4525 (2010).

    Article  Google Scholar 

  82. Chen, Z., Lin, Y.-M., Rooks, M.J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007).

    Article  Google Scholar 

  83. Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical review letters 100, 206803 (2008).

    Article  Google Scholar 

  84. Basu, D., Gilbert, M., Register, L., Banerjee, S. & MacDonald, A. Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors. Applied Physics Letters 92, 042114 (2008).

    Article  Google Scholar 

  85. Fang, T., Konar, A., Xing, H. & Jena, D. Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering. Physical Review B 78, 205403 (2008).

    Article  Google Scholar 

  86. Murali, R., Yang, Y., Brenner, K., Beck, T. & Meindl, J.D. Breakdown current density of graphene nanoribbons. Applied Physics Letters 94, 243114 (2009).

    Article  Google Scholar 

  87. First, P. et al. Epitaxial Graphenes on Silicon Carbide. MRS Bulletin 35, 296 (2010).

    Article  Google Scholar 

  88. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters 9, 30–35 (2008).

    Article  Google Scholar 

  89. Li, X. et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324, 1312–1314 (2009).

    Article  Google Scholar 

  90. Emtsev, K.V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials 8, 203–207 (2009).

    Article  Google Scholar 

  91. Jobst, J. et al. Quantum oscillations and quantum Hall effect in epitaxial graphene. Physical Review B 81, 195434 (2010).

    Article  Google Scholar 

  92. Shen, T. et al. Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001). Applied Physics Letters 95, 172105 (2009).

    Article  Google Scholar 

  93. Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A. & Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Physical Review Letters 103, 246804 (2009).

    Article  Google Scholar 

  94. Miller, D.L. et al. Observing the Quantization of Zero Mass Carriers in Graphene. Science 324, 924–927 (2009).

    Article  Google Scholar 

  95. Orlita, M. et al. Approaching the Dirac point in high-mobility multilayer epitaxial graphene. Physical Review Letters 101, 267601 (2008).

    Article  Google Scholar 

  96. Wu, X. et al. Half integer quantum Hall effect in high mobility single layer epitaxial graphene. Applied Physics Letters 95, 223108 (2009).

    Article  Google Scholar 

  97. Lee, D.S. et al. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2. Nano letters 8, 4320–4325 (2008).

    Article  Google Scholar 

  98. Yazyev, O.V. & Louie, S.G. Electronic transport in polycrystalline graphene. Nature Materials 9, 806–809 (2010).

    Article  Google Scholar 

  99. Huang, P.Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–92 (2011).

    Article  Google Scholar 

  100. Nienhaus, H., Kampen, T. & Mönch, W. Phonons in 3 C-, 4 H-, and 6 H-SiC. Surface science 324, L328–L332 (1995).

    Article  Google Scholar 

  101. Hwang, J., Kuo, C., Chen, L. & Chen, K. Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density. Nanotechnology 21, 465705 (2010).

    Article  Google Scholar 

  102. Li, X. et al. Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. Journal of the American Chemical Society 133, 2816–2819 (2011).

    Google Scholar 

  103. Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotechnology 3, 654–659 (2008).

    Article  Google Scholar 

  104. Tse, W. & Das Sarma, S. Energy relaxation of hot Dirac fermions in graphene. Phys. Rev. B 79, 235406 (2009).

    Google Scholar 

  105. Bistritzer, R. & MacDonald, A. Hydrodynamic theory of transport in doped graphene. Physical Review B 80, 085109 (2009).

    Article  Google Scholar 

  106. Barreiro, A., Lazzeri, M., Moser, J., Mauri, F. & Bachtold, A. Transport properties of graphene in the high-current limit. Physical Review Letters 103, 076601 (2009).

    Article  Google Scholar 

  107. DaSilva, A., Zou, K., Jain, J. & Zhu, J. Mechanism for current saturation and energy dissipation in graphene transistors. Physical Review Letters 104, 236601 (2010).

    Google Scholar 

  108. Perebeinos, V. & Avouris, P. Inelastic scattering and current saturation in graphene. Phys. Rev. B 81, 195442 (2010).

    Article  Google Scholar 

  109. Freitag, M. et al. Energy dissipation in graphene field-effect transistors. Nano letters 9, 1883–1888 (2009).

    Article  Google Scholar 

  110. Yao, Z., Kane, C. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Physical Review Letters 84, 2941–4 (2000).

    Article  Google Scholar 

  111. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Article  Google Scholar 

  112. Park, J.Y. et al. Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Letters 4, 517–520 (2004).

    Article  Google Scholar 

  113. Canali, C., Majni, G., Minder, R. & Ottaviani, G. Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. Electron Devices, IEEE Transactions on 22, 1045–1047 (1975).

    Article  Google Scholar 

  114. Meric, I. et al. Channel Length Scaling in Graphene Field-Effect Transistors Studied with Pulsed Current–Voltage Measurements. Nano Letters 11, 1093 (2011).

    Article  Google Scholar 

  115. Mak, K.F., Lui, C.H. & Heinz, T.F. Measurement of the thermal conductance of the graphene/SiO2 interface. Applied Physics Letters 97, 221904 (2010).

    Article  Google Scholar 

  116. Haugen, H., Huertas-Hernando, D. & Brataas, A. Spin transport in proximity-induced ferromagnetic graphene. Physical Review B 77, 115406 (2008).

    Article  Google Scholar 

  117. Hong, X., Posadas, A., Zou, K., Ahn, C.H. & Zhu, J. High-Mobility Few-Layer Graphene Field Effect Transistors Fabricated on Epitaxial Ferroelectric Gate Oxides. Physical Review Letters 102, 136808 (2009).

    Article  Google Scholar 

  118. Zheng, Y. et al. Gate-controlled nonvolatile graphene-ferroelectric memory. Applied Physics Letters 94, 163505 (2009).

    Article  Google Scholar 

  119. Ohno, Y., Maehashi, K., Yamashiro, Y. & Matsumoto, K. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett 9, 3318–3322 (2009).

    Article  Google Scholar 

Further Reading

  • N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Brooks Cole, 1976).

    Google Scholar 

  • C. Weisbuch, and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic Press, 1991).

    Google Scholar 

  • Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, edited by Ado Jorio, Gene Dresselhaus and Milred S. Dresselhaus, (Springer, 2008).

    Google Scholar 

  • B. I. Shklovskii, and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, 1984).

    Google Scholar 

  • Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, edited by H. Grabert, and M. H. Devoret, (Plenum Press, New York, 1992).

    Google Scholar 

Download references

Acknowledgements

The author acknowledges helpful discussions with Bill Cullen, Michael Fuhrer, Philip Kim, Elena Polyakova and Arend Van Der Zande. The assistance of my student Ke Zou in preparing the figures is much appreciated and I thank Vincent Crespi for a careful reading of the manuscript. This work is supported by NSF Grants No. NIRT ECS-0609243 and No. CAREER DMR-0748604.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhu, J. (2012). Electronic Transport in Graphene. In: Murali, R. (eds) Graphene Nanoelectronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0548-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0548-1_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0547-4

  • Online ISBN: 978-1-4614-0548-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics