Skip to main content

Small RNA Discovery and Characterisation in Eukaryotes Using High-Throughput Approaches

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 722))

Abstract

RNA silencing is a mechanism of genetic regulation that is mediated by short noncoding RNAs, or small RNAs (sRNAs). Regulatory interactions are established based on nucleotide sequence complementarity between the sRNAs and their targets. The development of new high-throughput sequencing technologies has accelerated the discovery of sRNAs in a variety of plants and animals. The use of these and other high-throughput technologies, such as microarrays, to measure RNA and protein concentrations of gene products potentially regulated by sRNAs has also been important for their functional characterisation. mRNAs targeted by sRNAs can produce new sRNAs or the protein encoded by the target mRNA can regulate other mRNAs. In either case the targeting sRNAs are parts of complex RNA networks therefore identifying and characterising sRNAs contribute to better understanding of RNA networks. In this chapter we will review RNA silencing, the different types of sRNAs that mediate it and the computational methods that have been developed to use high-throughput technologies in the study of sRNAs and their targets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gottesman S. The small RNA regulators of Escherichia coli: roles and mechanisms*. Annual review of microbiology 2004; 58:303–328.

    Article  PubMed  CAS  Google Scholar 

  2. Wagner EG, Simons RW. Antisense RNA control in bacteria, phages and plasmids. Annual review of microbiology 1994; 48:713–742.

    Article  PubMed  CAS  Google Scholar 

  3. Wassarman KM. Small RNAs in bacteria: diverse regulators of gene expression in response to environmental changes. Cell 2002; 109(2):141–144.

    Article  PubMed  CAS  Google Scholar 

  4. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75(5):855–862.

    Article  PubMed  CAS  Google Scholar 

  5. Lee RC, Feinbaum RI, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5):843–854.

    Article  PubMed  CAS  Google Scholar 

  6. Mueller E, Gilbert J, Davenport G et al. Homology-dependent resistance: transgenic virus resistance in plants related to homology-dependent gene silencing. Plant J. 1995; 7(6):1001–1013.

    Article  CAS  Google Scholar 

  7. Voinnet O. Systemic Spread of Sequence-Specific Transgene RNA Degradation in Plants Is Initiated by Localized Introduction of Ectopic Promoterless DNA. Cell 1998; 95(2):177–187.

    Article  PubMed  CAS  Google Scholar 

  8. Nellen W, Lichtenstein C. What makes an mRNA anti-sensitive? Trends Biochem Sci 1993; 18(11):419–423.

    Article  PubMed  CAS  Google Scholar 

  9. Fire A, Xu S, Montgomery MK et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391(6669):806–811.

    Article  PubMed  CAS  Google Scholar 

  10. Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009; 136(4):642–655.

    Article  PubMed  CAS  Google Scholar 

  11. Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell 2008; 132(1):9–14.

    Article  PubMed  CAS  Google Scholar 

  12. Filipowicz W, Jaskiewicz L, Kolb FA et al. Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 2005; 15(3):331–341.

    Article  PubMed  CAS  Google Scholar 

  13. Verdel A, Jia S, Gerber S et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 2004; 303(5658):672–676.

    Article  PubMed  CAS  Google Scholar 

  14. Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet 2009; 10(2):94–108.

    Article  PubMed  CAS  Google Scholar 

  15. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism and function. Cell 2004; 116(2):281–297.

    Article  PubMed  CAS  Google Scholar 

  16. Bushati N, Cohen SM. MicroRNA Functions. Annu Rev Cell Dev Biol 2007; 23(1): 175–205.

    Article  PubMed  CAS  Google Scholar 

  17. Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and Their Regulatory Roles in Plants. Annu Rev Plant Biol 2006; 57:19–53.

    Article  PubMed  CAS  Google Scholar 

  18. Cullen BR. Transcription and processing of human microRNA precursors. Mol Cell2004; 16(6):861–865.

    Article  PubMed  CAS  Google Scholar 

  19. Du T, Zamore PD. MicroPrimer: the biogenesis and function of microRNA. Development 2005; 132(21):4645–4652.

    Article  PubMed  CAS  Google Scholar 

  20. Faller M, Guo F. MicroRNA biogenesis: there’s more than one way to skin a cat. Biochim Biophys Acta 2008; 1779(11):663–667.

    PubMed  CAS  Google Scholar 

  21. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009; 10(2): 126–139.

    Article  PubMed  CAS  Google Scholar 

  22. Voinnet O. Origin, Biogenesis and Activity of Plant MicroRNAs. Cell 2009; 136(4):669–687.

    Article  PubMed  CAS  Google Scholar 

  23. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005; 6(5):376–385.

    Article  PubMed  CAS  Google Scholar 

  24. Chen X. Small RNAs and Their Roles in Plant Development. Annu Rev Cell Dev Biol 2009; 25(1):21–44.

    Article  PubMed  CAS  Google Scholar 

  25. Schwach F, Moxon S, Moulton V et al. Deciphering the diversity of small RNAs in plants: the long and short of it. Brief Funct Genomic Proteomic 2009; 8(6):472–481.

    Article  PubMed  CAS  Google Scholar 

  26. Okamura K, Lai EC. Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol 2008; 9(9):673–678.

    Article  PubMed  CAS  Google Scholar 

  27. Thomson T, Lin H. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 2009; 25(1):355–376.

    Article  PubMed  CAS  Google Scholar 

  28. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of posttranscriptional regulation by micro RNAs: are the answers in sight? Nat Rev Genet 2008; 9(2): 102–114.

    Article  PubMed  CAS  Google Scholar 

  29. Schwab R, Palatnik JF, Riester M et al. Specific Effects of Micro RNAs on the Plant Transcriptome. Dev Cell 2005; 8(4):517–527.

    Article  PubMed  CAS  Google Scholar 

  30. Jones-Rhoades MW, Bartel DP. Computational identification of plant micro RNAs and their targets, including a stress-induced miRNA. Mol Cell 2004; 14(6):787–799.

    Article  PubMed  CAS  Google Scholar 

  31. Rajewsky N. MicroRNA target predictions in animals. Nat Genet 2006; 38 Suppl 1(6s):S8–S13.

    Article  CAS  Google Scholar 

  32. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136(2):215–233.

    Article  PubMed  CAS  Google Scholar 

  33. Ding XC, Weiler J, Grosshans H. Regulating the regulators: mechanisms controlling the maturation of microRNAs. Trends in biotechnology 2009; 27(1):27–36.

    Article  PubMed  CAS  Google Scholar 

  34. Muralidhar B, Goldstein L, Ng G et al. Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels. The Journal of Pathology 2007; 212(4):368–377.

    Article  PubMed  CAS  Google Scholar 

  35. Xie Z, Kasschau KD, Carrington JC. Negative feedback regulation of dicer-like1 in arabidopsis by microRNA-guided mRNA degradation. Current Biology 2003; 13(9):784–789.

    Article  PubMed  CAS  Google Scholar 

  36. Piriyapongsa J, Jordan IK. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 2008; 14(5):814–821.

    Article  PubMed  CAS  Google Scholar 

  37. Giraldez AJ, Mishima Y, Rihel J et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 2006; 312(5770):75–79.

    Article  PubMed  CAS  Google Scholar 

  38. Zhao X, Fjose A, Larsen N et al. Treatment with small interfering RNA affects the microRNA pathway and causes unspecific defects in zebrafish embryos. FEBS Journal 2008; 275(9):2177–2184.

    Article  PubMed  CAS  Google Scholar 

  39. Marson A, Levine SS, Cole MF et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 2008; 134(3):521–533.

    Article  PubMed  CAS  Google Scholar 

  40. Zhou X, Ruan J, Wang G et al. Characterization and identification of microRNA core promoters in four model species. PLoS Comput Biol 2007; 3(3).

    Google Scholar 

  41. Megraw M, Baev V, Rusinov V et al. MicroRNA promoter element discovery in Arabidopsis. RNA 2006; 12(9):1612–1619.

    Article  PubMed  CAS  Google Scholar 

  42. Alwine JC, Kemp DJ, Stark GR. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci USA 1977; 74(12):5350–5354.

    Article  PubMed  CAS  Google Scholar 

  43. Becker-André M, Hahlbrock K. Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY). Nucleic Acids Res 1989; 17(22):9437–9446.

    Article  PubMed  Google Scholar 

  44. Brown PO, Botstein D. Exploring the new world of the genome with DNA microarrays. Nat Genet 1999; 21(1 Suppl):33–37.

    Article  PubMed  CAS  Google Scholar 

  45. Reinartz J, Bruyns E, Lin J et al. Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Brief Funct Genomic Proteomic 2002; 1(1):95–104.

    Article  PubMed  CAS  Google Scholar 

  46. Margulies M, Egholm M, Altman WE et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005; 437(7057):376–380.

    PubMed  CAS  Google Scholar 

  47. Bennett S. Solexa Ltd. Pharmacogenomics 2004; 5(4):433–438.

    Article  PubMed  Google Scholar 

  48. Shendure J, Porreca GJ, Reppas NB et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 2005; 309(5741): 1728–1732.

    Article  PubMed  CAS  Google Scholar 

  49. Willenbrock H, Salomon J, Søkilde R et al. Quantitative miRNA expression analysis: comparingmicroarrays with next-generation sequencing. RNA (New York, N.Y.) 2009; 15(11):2028–2034.

    CAS  Google Scholar 

  50. Linsen SE, de Wit E, Janssens G et al. Limitations and possibilities of small RNA digital gene expression profiling. Nature methods 2009; 6(7):474–476.

    Article  PubMed  CAS  Google Scholar 

  51. Lai E, Tomancak P, Williams R et al. Computational identification of Drosophila microRNA genes. Genome Biol 2003; 4(7).

    Google Scholar 

  52. Lim LP, Glasner ME, Yekta S et al. Vertebrate microRNA genes. Science 2003; 299(5612).

    Google Scholar 

  53. Bonnet E, Wuyts J, Rouzé P et al. Detection of 91 potential conservedplant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA 2004; 101(31): 11511–11516.

    Article  PubMed  CAS  Google Scholar 

  54. Wang X, Zhang J, Li F et al. MicroRNA identification based on sequence and structure alignment. Bioinformatics 2005; 21(18):3610–3614.

    Article  PubMed  CAS  Google Scholar 

  55. Lim LP, Lau NC, Weinstein EG et al. The microRNAs of caenorhabditis elegans. Genes Dev 2003; 17(8):991–1008.

    Article  PubMed  CAS  Google Scholar 

  56. Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res 2003; 31(13):3429–3431.

    Article  PubMed  CAS  Google Scholar 

  57. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res2003; 31(13):3406–3415.

    Article  PubMed  CAS  Google Scholar 

  58. Adai A, Johnson C, Mlotshwa S et al. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 2005; 15(1):78–91.

    Article  PubMed  CAS  Google Scholar 

  59. Barakat A, Wall K, Leebens-Mack J et al. Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants. Plant J.: for cell and molecular biology 2007;51(6):991–1003.

    CAS  Google Scholar 

  60. Bentwich I, Avniel A, Karov Y et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005; 37(7):766–770.

    Article  PubMed  CAS  Google Scholar 

  61. Fahlgren N, Howell MD, Kasschau KD et al. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PloS one 2007; 2(2):e219.

    Article  PubMed  CAS  Google Scholar 

  62. Szittya G, Moxon S, Santos DM et al. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC genomics 2008; 9:593.

    Article  PubMed  CAS  Google Scholar 

  63. Yao Y, Guo G, Ni Z et al. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol 2007; 8(6):R96.

    Article  PubMed  CAS  Google Scholar 

  64. Axtell MJ, Bartel DP. Antiquity of microRNAs and their targets in land plants. Plant Cell 2005; 17(6):1658–1673.

    Article  PubMed  CAS  Google Scholar 

  65. Lagos-Quintana M, Rauhut R, Lendeckel W et al. Identification of novel genes coding for small expressed RNAs. Science (New York, N.Y.) 2001; 294(5543):853–858.

    Article  CAS  Google Scholar 

  66. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science (New York, N.Y.) 2001; 294(5543):862–864.

    Article  CAS  Google Scholar 

  67. Lau NC, Lim LP, Weinstein EG et al. An abundant class of tiny RNAs with probable regulatory roles in caenorhabditis elegans. Science 2001; 294(5543):858–862.

    Article  PubMed  CAS  Google Scholar 

  68. Berezikov E, Thuemmler F, Laake LW et al. Diversity of microRNAs in human and chimpanzee brain. Nat Genet 2006; 38(12):1375–1377.

    Article  PubMed  CAS  Google Scholar 

  69. Lee H, Chang S, Choudhary S et al. qiRNA is a new type of small interfering RNA induced by DNA damage. Nature 2009; 459(7244):274–277.

    Article  PubMed  CAS  Google Scholar 

  70. Ghildiyal M, Scitz H, Horwich MD et al. Endogenous siRNAs derived from transposons and mRNAs in drosophila somatic cells. Science 2008; 320(5879):1077–1081.

    Article  PubMed  CAS  Google Scholar 

  71. Wang XJ, Reyes J, Chua NH et al. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 2004; 5(9).

    Google Scholar 

  72. Lu C, Kulkarni K, Souret FF et al. MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 2006; 16(10): 1276–1288.

    Article  PubMed  CAS  Google Scholar 

  73. Moxon S, Jing R, Szittya G et al. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 2008; 18(10): 1602–1609.

    Article  PubMed  CAS  Google Scholar 

  74. Glazov EA, Cottee PA, Barris WC et al. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res 2008; 18(6):957–964.

    Article  PubMed  CAS  Google Scholar 

  75. Kuchenbauer F, Morin RD, Argiropoulos B et al. In-depth characterization of the micro RNA transcriptome in a leukemia progression model. Genome Res 2008; 18(11): 1787–1797.

    Article  PubMed  CAS  Google Scholar 

  76. Morin RD, O’Connor MD, Griffith M et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 2008; 18(4):610–621.

    Article  PubMed  CAS  Google Scholar 

  77. Goff LA, Davila J, Swerdel MR et al. Ago2 immunoprecipitation identifies predicted microRNAs in human embryonic stem cells and neural precursors. PLoS ONE 2009; 4(9).

    Google Scholar 

  78. Cai Y, Yu X, Zhou Q et al. Novel microRNAs in silkworm (Bombyx mori). Funct Integr Genomics 2010; 10(3):405–415.

    Article  PubMed  CAS  Google Scholar 

  79. Trapnell C, Salzberg SL. How to map billions of short reads onto genomes. Nat Biotechnol 2009; 27(5):455–457.

    Article  PubMed  CAS  Google Scholar 

  80. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England) 2009; 25(14): 1754–1760.

    Article  CAS  Google Scholar 

  81. Langmead B, Trapnell C, Pop M et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10(3).

    Google Scholar 

  82. Prüfer K, Stenzel U, Dannemann M et al. PatMaN: rapid alignment of short sequences to large databases. Bioinformatics 2008; 24(13): 1530–1531.

    Article  PubMed  CAS  Google Scholar 

  83. Friedländer MR, Chen W, Adamidi C et al. Discovering micro RNAs from deep sequencing data using miRDeep. Nat Biotech 2008; 26(4):407–415.

    Article  CAS  Google Scholar 

  84. Moxon S, Schwach F, Dalmay T et al. A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics 2008; 24(19):2252–2253.

    Article  PubMed  CAS  Google Scholar 

  85. Hackenberg M, Sturm M, Langenberger D et al. miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucl Acids Res 2009; 37(suppl_2):W68–W76.

    Article  PubMed  CAS  Google Scholar 

  86. Wang WC, Lin FM, Chang WC et al. miRExpress: Analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics 2009; 10(1).

    Google Scholar 

  87. Pantano L, Estivill X, Martí E. SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res2010; 38(5):e34.

    Article  PubMed  CAS  Google Scholar 

  88. Griffiths-Jones S, Saini HK, van Dongen S et al. miRBase: tools for microRNA genomics. Nucleic Acids Res2008; 36(suppl_1):D154–D158.

    PubMed  CAS  Google Scholar 

  89. Axtell MJ, Jan C, Rajagopalan R et al. A two-hit trigger for siRNA biogenesis in plants. Cell 2006; 127(3):565–577.

    Article  PubMed  CAS  Google Scholar 

  90. Chen H, Li Y, Wu S. Bioinformatic prediction and experimental validation of amicroRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proc Natl Acad Sci USA 2007; 104(9):3318–3323.

    Article  PubMed  CAS  Google Scholar 

  91. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev 2001; 15(2):188–200.

    Article  PubMed  CAS  Google Scholar 

  92. MacLean D, Moulton V, Studholme DJ. Finding sRNA generative locales from high-throughput sequencing data with NiBLS. BMC Bioinformatics 2010; 11:93.

    Article  PubMed  CAS  Google Scholar 

  93. Llave C, Kasschau KD, Rector MA et al. Endogenous and silencing-associated small RNAs in plants. The Plant cell 2002; 14(7):1605–1619.

    Article  PubMed  CAS  Google Scholar 

  94. German MA, Pillay M, Jeong DH et al. Global identification of microRNA—target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 2008; 26(8):941–946.

    Article  PubMed  CAS  Google Scholar 

  95. Addo-Quaye C, Eshoo TW, Bartel DP et al. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Current Biology 2008; 18(10):758–762.

    Article  PubMed  CAS  Google Scholar 

  96. Addo-Quaye C, Miller W, Axtell MJ. CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics (Oxford, England) 2009; 25(1):130–131.

    Article  CAS  Google Scholar 

  97. Kuhn DE, Martin MM, Feldman DS et al. Experimental validation of miRNAtargets. Methods (San Diego, Calif.) 2008; 44(1):47–54.

    CAS  Google Scholar 

  98. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1):15–20.

    Article  PubMed  CAS  Google Scholar 

  99. Krek A, Grün D, Poy MN et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37(5):495–500.

    Article  PubMed  CAS  Google Scholar 

  100. Kertesz M, Iovino N, Unnerstall U et al. The role of site accessibility in microRNA target recognition. Nat Genet 2007; 39(10):1278–1284.

    Article  PubMed  CAS  Google Scholar 

  101. Miranda KC, Huynh T, Tay Y et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006; 126(6):1203–1217.

    Article  PubMed  CAS  Google Scholar 

  102. Baek D, Villen J, Shin C et al. The impact of microRNAs on protein output. Nature 2008; 455(7209):64–71.

    Article  PubMed  CAS  Google Scholar 

  103. Selbach M, Schwanhäusser B, Thierfelder N et al. Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455(7209):58–63.

    Article  PubMed  CAS  Google Scholar 

  104. Lim LP, Lau NC, Garrett-Engele P et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 443(7027):769–773.

    Article  CAS  Google Scholar 

  105. Krützfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with “antagomirs’. Nature 2005; 438(7068):685–689.

    Article  PubMed  CAS  Google Scholar 

  106. Elmen J, Lindow M, Silahtaroglu A et al. Antagonism of micro RNA-122 in mice by systemically administered LNA-antimi R leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res2007; 36(4):1153–1162.

    Article  PubMed  CAS  Google Scholar 

  107. Elmén J, Lindow M, Schütz S et al. LNA-mediated microRNA silencing in nonhuman primates. Nature 2008; 452(7189):896–899.

    Article  PubMed  CAS  Google Scholar 

  108. Zhao Y, Ransom JF, Li A et al. Dysregulation of cardiogenesis, cardiac conduction and cell cycle in mice lacking miRNA-1-2. Cell 2007; 129(2):303–317.

    Article  PubMed  CAS  Google Scholar 

  109. Nicolas FE, Pais H, Schwach F et al. Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140. RNA 2008; 14(12):2513–2520.

    Article  PubMed  CAS  Google Scholar 

  110. Zhang L, Hammell M, Kudlow BA et al. Systematic analysis of dynamic miRNA-target interactions during C. elegans development. Development 2009; 136(18):3043–3055.

    Article  PubMed  CAS  Google Scholar 

  111. Karginov FV, Conaco C, Xuan Z et al. A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci USA 2007; 104(49):19291–19296.

    Article  PubMed  CAS  Google Scholar 

  112. Easow G, Teleman AA, Cohen SM. Isolation of microRNA targets by miRNP immunopurification. RNA 2007; 13(8):1198–1204.

    Article  PubMed  CAS  Google Scholar 

  113. Hong X, Hammell M, Ambros V et al. Immunopurification of Agol miRNPs selects for a distinct class of microRNA targets. Proc Natl Acad Sci USA 2009; 106(35):15085–15090.

    Article  PubMed  CAS  Google Scholar 

  114. Chi SW, Zang JB, Mele A et al. Argonaute HITS-CLIP decodes microRNA—mRNA interaction maps. Nature 2009; 460(7254):479–486.

    PubMed  CAS  Google Scholar 

  115. Babiarz JE, Ruby JG, Wang Y et al. Mouse ES cells express endogenous shRNAs, siRNAs and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 2008; 22(20):2773–2785.

    Article  PubMed  CAS  Google Scholar 

  116. Corcoran DL, Pandit KV, Gordon B et al. Features of Mammalian microRNA Promoters Emerge from Polymerase II Chromatin Immunoprecipitation Data. PLoS ONE 2009; 4(4).

    Google Scholar 

  117. Martinez NJ, Ow MC, Barrasa MI et al. A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev 2008; 22(18):2535–2549.

    Article  PubMed  CAS  Google Scholar 

  118. Shalgi R, Lieber D, Oren M et al. Global and local architecture of the mammalian micro RNA-transcription factor regulatory network. PLoS Comput Biol 2007; 3(7):e131.

    Article  PubMed  CAS  Google Scholar 

  119. White R, Blainey P, Fan HC et al. Digital PCR provides sensitive and absolute calibration for high throughput sequencing. BMC Genomics 2009; 10:116.

    Article  PubMed  CAS  Google Scholar 

  120. Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol 2009; 25(4): 195–203.

    Article  PubMed  CAS  Google Scholar 

  121. Dai X, Zhao PX. pssRNAMiner: a plant short small RNA regulatory cascade analysis server. Nucleic Acids Res2008; 36(Web Server issue):W114–W118.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pais, H., Moxon, S., Dalmay, T., Moulton, V. (2011). Small RNA Discovery and Characterisation in Eukaryotes Using High-Throughput Approaches. In: Collins, L.J. (eds) RNA Infrastructure and Networks. Advances in Experimental Medicine and Biology, vol 722. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0332-6_16

Download citation

Publish with us

Policies and ethics