Skip to main content

Proteome Network Emulating Models

  • Chapter
  • First Online:
  • 835 Accesses

Abstract

The proteome network (or protein–protein interaction (PPI) network) of an organism represents each protein as a vertex and each pairwise interaction as an edge. In the past 10 years, we witnessed a significant amount of effort going into the development of the PPI networks and the computational tools for analyzing them. In particular, there have been several attempts to capture the topological features of PPI networks through random graph models, which have been successfully applied to the emulation of “small-world” networks, which are sparse, but highly connected. The available PPI networks have also been thought to have a small diameter with power-law degree distribution thus “scale-free” network emulators such as the Preferential Attachment Model have been investigated for the purposes of emulating PPI networks. The lack of success in this direction led to the development of further models, which either reject the “scale-freeness” of the PPI networks, such as the Geometric Random Network Model or guarantee scale freeness through means of expansion other than “Preferential Attachment” such as vertex (i.e., protein/gene duplication) – as in the case of the Pastor-Satorras Model or the more recent Generalized Duplication Model. In this study, we compare available PPI networks of various sizes with those generated by the random graph models and observe that the Generalized Duplication Model, with the “right” choice of the initial “seed” network, provides the best alternative in capturing all network feature distributions. One network feature distribution that remains difficult to capture, however, is the “dense graphlet” distribution: all available PPI networks seem to include (many) more dense graphlets such as cliques in comparison to the networks generated by all available models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    By large cliques we mean its size should be bigger than 5 or 6 nodes.

References

  1. W. Aiello, F. Chung, and L. Lu. A random graph model for power law graphs. In Proceedings of ACM STOC, pages 171–180, 2000.

    Google Scholar 

  2. Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

    Google Scholar 

  3. A.-L. Barabási and R. A. Albert. Emergence of scaling in random networks. Science, 286: 509–512, 1999.

    Article  PubMed  Google Scholar 

  4. G. Bebek, P. Berenbrink, C. Cooper, T. Friedetzky, J. Nadeau, and S.C. Sahinalp. The degree distribution of the general duplication models. Theoretical Computer Science, 369(1–3): 239–249, 2006.

    Article  Google Scholar 

  5. G. Bebek, P. Berenbrink, C. Cooper, T. Friedetzky, J. Nadeau, and S.C. Sahinalp. Topological properties of proteome networks. In Proceedings of RECOMB satellite meeting on System Biology. LNBI,Springer, 2005.

    Google Scholar 

  6. A. Bhan, D. J. Galas, and T. G. Dewey. A duplication growth model of gene expression networks. Bioinformatis, 18:1486–1493, 2002.

    Article  CAS  Google Scholar 

  7. B. Bollobás, O Riordan, J. Spencer, and G. Tusanády. The degree sequence of a scale-free random graph process. Random Struct. Algorithms, 18:279–290, 2001.

    Google Scholar 

  8. F. Chung, L. Lu, and D.J. Galas. Duplication models for biological networks. Journal of Computational Biology, 10:677–687, 2003.

    Article  PubMed  CAS  Google Scholar 

  9. C. Cooper and A. Frieze. A general model of webgraphs. Random Struct. Algorithms, 22: 311–335, 2003.

    Article  Google Scholar 

  10. M. Rasajskim, D. J. Higham, and N. Przulj. Fitting a geometric graph to a protein-protein interaction network. Bioinformatics, 8:1093–1099, 2008.

    Google Scholar 

  11. E. De Silva and M.P.H. Stumpf. Complex networks and simple models in biology. Journal of the Royal Society Interface, 2:419–430, 2005.

    Article  Google Scholar 

  12. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet topology. In SIGCOMM, pages 251–262, 1999.

    Google Scholar 

  13. R. Ferrer i Cancho, and C. Janssen. The small world of human language. In Proceedings of Royal Society of London B, volume 268, pages 2261–2266, 2001.

    Google Scholar 

  14. Michael R. Garey and David S.Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

    Google Scholar 

  15. J. Han, D. Dupuy, N. Bertin, M. Cusick, and M. Vidal. Effect of sampling on topology predictions of protein-protein interaction networks. Nature Biotech, 23:839–844, 2005.

    Article  CAS  Google Scholar 

  16. F. Hormozdiari, P. Berenbrink, N. Przulj, and S.C. Sahinalp. Not all scale free networks are born equal: the role of the seed graph in ppi network emulation. In Proceedings of RECOMB satellite meeting on System Biology, 2006.

    Google Scholar 

  17. B. Kahng S. Redner J. Kim, P.L. Krapivsky. Infinite-order percolation and giant fluctuations in a protein interaction network. Phys. Rev. E 66, 2002.

    Google Scholar 

  18. H. Jeong, S. Mason, A.-L. Barabasi, and Z. N. Oltvai. Lethality and centrality in protein networks. Nature, 411:41, 2001.

    Article  PubMed  CAS  Google Scholar 

  19. J. Kleinberg, R. Kumar, PP. Raphavan, S. Rajagopalan, and A. Tomkins. The web as a graph: Measurements, models and methods. In Proceedings of COCOON, pages 1–17, 1999.

    Google Scholar 

  20. R. Kumar, P. Raghavan, D. Sivakumar, A. Tomkins, and E. Upfal. Stochastic models for the web graph. In Proceedings of FOCS, pages 57–65, 2002.

    Google Scholar 

  21. D. G. Corneil, N. Przulj, and I. Jurisica. Modeling interactome: Scale-free or geometric? Bioinformatics, 150:216–231, 2005.

    Google Scholar 

  22. N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S.C. Sahinalp. Biomolecular network motif counting and discovery by color coding. Bioinformatics, 24: i32–i40, 2008.

    Article  Google Scholar 

  23. D. J. Higham, O. Kuchaiev, M. Rasajski and N. Przulj. Geometric de-noising of protein-protein interaction networks. Plos Computationtal Biology, 5, 2009.

    Google Scholar 

  24. Ohno. Evolution by gene duplication. Springer, 1970.

    Google Scholar 

  25. P. Dao, A. Schönhuth, F. Hormozdiari, I. Hajirasouliha, S.C. Sahinalp, and M. Ester. Quantifying systemic evolutionary changes by color coding confidence-sored ppi networks. In Proceedings of the WABI 2009, pages 37–48, 2009.

    Google Scholar 

  26. R. Pastor-Satorras, E. Smith, and R.V. Sole. Evolving protein interaction networks through gene duplication. Journal of Theoretical biology, 222:199–210, 2003.

    Article  PubMed  CAS  Google Scholar 

  27. T. Przytycka and Y.K. Yu. Scale-free networks versus evolutionary drift. Computational Biology and Chemistry, 28:257–264, 2004.

    Article  PubMed  CAS  Google Scholar 

  28. F. Moser, A. Schnhuth, J. Holman, M. Ester, R. Colak, F. Hormozdiar, and S.C. Sahinalp. Dense graphlet statistics of protein interaction and random networks. In Proceedings of the Pacific Symposium on Biocomputing 2009, pages 190–202, 2009.

    Google Scholar 

  29. A.-L. Barabsi, R.A. Albert. Topology of evolving networks: local events and universality. Phys. Rev. Lett., 85:5234, 2000.

    Article  Google Scholar 

  30. S. Redner. How popular is your paper? an empirical study of the citations distribution. European Physical journal B, 4:131–134, 1998.

    Article  CAS  Google Scholar 

  31. Erdös and Rényi. On random graphsI. Publicationes Mathematicae Debrecen, 6:290–297, 1959.

    Google Scholar 

  32. H. A. Simon. On a class of skew distribution functions. Biometrika, 42:425440, 1955.

    Google Scholar 

  33. A.N. Samukhin, S.N. Dorogovstev, J.F.F. Mendes. Structure of growing networks with preferential linking. Phys. Rev. Lett., 85:4633, 2000.

    Article  PubMed  Google Scholar 

  34. J.F.F. Mendes, S.N. Dorogovstev. Evolution of networks with aging of sites. Phys. Rev. E, 62:1842, 2000.

    Article  Google Scholar 

  35. R. Tanaka and et al. Some protein interaction data do not exhibit power law statistics. FEBS Letters, 579:5140–5144, 2005.

    Google Scholar 

  36. A. Vázquez, A. Flammini, A. Maritan, and A. Vespignani. Modelling of protein interaction networks. Complexus, 1:38–44, 2003.

    Article  Google Scholar 

  37. A. Wagner. The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Molecular Biology and Evolution, 18:1283–1292, 2001.

    PubMed  CAS  Google Scholar 

  38. D.J. Watts. Small Worlds: The Dynamics of Networks between Order and Randomness. Princeton University Press, 1999.

    Google Scholar 

  39. D.J. Watts and S.H. Strogatz. Collective dynamics of small-world networks. Nature, 393: 440–442, 1998.

    Article  PubMed  CAS  Google Scholar 

  40. I. Xenarios and et al. Dip, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Research, 30:303–305, 2002.

    Google Scholar 

  41. G. Yule. A mathematical theory of evolution based on the conclusions of dr. j.c. willis. Philos. Trans. Roy. Soc. London (Ser. B), 213, 1925.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuong Dao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dao, P., Hormozdiari, F., Hajirasouliha, I., Ester, M., Sahinalp, S.C. (2012). Proteome Network Emulating Models. In: Koyutürk, M., Subramaniam, S., Grama, A. (eds) Functional Coherence of Molecular Networks in Bioinformatics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0320-3_4

Download citation

Publish with us

Policies and ethics