Skip to main content

Basic AGC Cells

  • Chapter
  • First Online:
Book cover Automatic Gain Control

Abstract

Automatic gain control circuit configurations require three key components that are employed in all or most architectures: a variable gain amplifier, a peak signal detector and a gain control voltage generation circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Toumazou, F. J. Lidgey, and D. G. Haigh, Eds.; “Analogue IC Design: The Current-Mode Approach”; London: Peregrinus, 1990.

    Google Scholar 

  2. Quoc-Hoang Duong, Quan Le, Chang-Wan Kim, and Sang-Gug Lee; “A 95-dB Linear Low-Power Variable Gain Amplifier”; Circuits and Systems II: Express Briefs, IEEE Transactions on; Vol. 53, Issue 8, Aug. 2006.

    Google Scholar 

  3. W. Liu, S.-I. Liu and S.-K. Wei; “CMOS exponential-control variable gain amplifiers”; Circuits Devices Syst., IEE Proc.; Vol. 151, Issue 2, Apr. 2004.

    Google Scholar 

  4. S. Tadjpour, F. Behbahani, A.A. Abidi; “A CMOS variable gain amplifier for a wideband wireless receiver”; VLSI Circuits, Digest of Technical Papers. 1998 Symposium on; pp. 86 – 89, Jun. 1998.

    Google Scholar 

  5. C. C. Hsu and J. T. Wu; “A Highly Linear 125-MHz CMOS Switched-Resistor Programmable-Gain Amplifier”; Solid-State Circuits, IEEE Journal of; Vol. 38, Issue 10, Oct. 2003.

    Google Scholar 

  6. J. Guido, V. Leung, J. Kenney, J. Trackim, A. Agrillo, E. Zimany, and R. Shariatdoust; “Analog front end IC for category I and II ADSL”; VLSI Circuits, 2000. Digest of Technical Papers. 2000 Symposium on; pp. 178 – 181, 2000.

    Google Scholar 

  7. Huy-Hieu Nguyen, Hoai-Nam Nguyen, Jeong-Seon Lee, and Sang-Gug Lee; “A Binary-Weighted Switching and Reconfiguration-Based Programmable Gain Amplifier”; Circuits and Systems II: Express Briefs, IEEE Transactions on; Vol. 56, Issue 9, Sep. 2009

    Google Scholar 

  8. J.J.F. Rijns; “CMOS low-distortion high-frequency variable-gain amplifier”; Solid-State Circuits, IEEE Journal of; Vol. 31, pp. 1029 – 1034, Jul. 1996.

    Google Scholar 

  9. M.A.I. Mostafa, S.H.K. Embabi, M. Elmala; “Variable Gain Amplifier for Dual Mode WCDMA/GSM Receivers”; Solid-State Circuits Conference, 2001. ESSCIRC 2001. Proceedings of the 27th European; pp. 53 – 56, Sept. 2001.

    Google Scholar 

  10. B. Calvo, S. Celma, M.T. Sanz; “Low-Voltage Low-Power 100MHz Programmable Gain Amplifier in 0.35μm CMOS”; Analog Processing; May 2006.

    Google Scholar 

  11. J. Ramírez-Angulo, R. G. Carvajal, A. Torralba, J.A. Galan, A.P. Vega-Leal and J. Thombs; “The flipped voltage follower: a useful cell for low- voltage low-power circuit design”; Circuits and Systems, 2002. IEEE International Symposium on; Vol. 3, pp. 615 – 618, 2002.

    Google Scholar 

  12. J.N. Babanezhad, G.C. Temes; “A 20-V four-quadrant CMOS analog multiplier”; Solid-State Circuits, IEEE Journal of; Vol. 20, Issue 6, pp. 1158 – 1168, Dec. 1985.

    Google Scholar 

  13. D.C. Soo, R.G. Meyer; “A four-quadrant NMOS analog multiplier”; Solid-State Circuits, IEEE Journal of; Vol. 17, Issue 6, pp. 1174 – 1178, Dec. 1982.

    Google Scholar 

  14. S.I. Liu and Y.S. Hwang; “CMOS Four-Quadrant Multiplier Using Bias Feedback Techniques”; Solid-State Circuits, IEEE Journal of; Vol. 29, Issue 6, Jun. 1994.

    Google Scholar 

  15. G. Han and E. Sánchez-Sinencio; “CMOS Transconductance Multipliers: A Tutorial”; Circuits and Systems II: Express Briefs, IEEE Transactions on; Vol. 45, Issue 12, Dec. 1998.

    Google Scholar 

  16. J.P. Alegre, S. Celma, B. Calvo and A. Otin; “Low-Voltage Low-Power 200MHz Variable Gain Amplier in CMOS 0.35µm”; European Conference on Circuit Theory and Design (ECCTD); Sevilla, Spain, Aug. 2007.

    Google Scholar 

  17. Q.H. Duong, V. Krizhanovskii, H.C. Choi, S.J. Yun, M.S. Yang and S.G. Lee; “Low-voltage, High dB-Linear, Exponential V-V Converter”; Electronic Letters; Vol. 40, Issue 17, 2004.

    Google Scholar 

  18. B. Calvo, S. Celma, M.T. Sanz, J.P. Alegre and F. Aznar; “Low-Voltage Linearly Tunable CMOS Transconductor with Common-Mode Feedforward”; Circuits and Systems I: Regular Papers, IEEE Transactions on; Vol. 55, Issue 3, pp. 715 – 721, Apr. 2008.

    Google Scholar 

  19. E. Sánchez-Sinencio and J. Silva-Martínez; “CMOS Transconductance Amplifiers and Active Filters: A Tutorial”; IEE Proceedings Circuits, Devices & Systems; Vol. 147, Issue 1, pp. 3 – 12, 2000.

    Google Scholar 

  20. R.G. Carvajal, J. Ramírez-Angulo, A.J. Lopez-Martin, A. Torralba, J.A.G. Galan, A. Carlosena and F.M. Chavero; “The Flipped Voltage Follower: a Useful Cell for Low-voltage Low-power Circuit Design”; Circuits and Systems I: Regular Papers, IEEE Transactions on; Vol. 52, Issue 7, pp. 1276 – 1291, 2005.

    Google Scholar 

  21. V. Saari, S. Lindfors; “Analysis of Common-Mode Induced Even-Order Distortion in a Pseudo-Differential gm-C Filter”; Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on; pp. 3546 – 3549, May 2007.

    Google Scholar 

  22. A. Baschirotto, F. Rezzi and R. Castello; “Low-voltage Balanced Transconductor with High Input Common-mode Rejection”; Electronics Letters; Vol. 30, Issue 20, pp. 1669 – 1670, Sep. 1994.

    Google Scholar 

  23. H.Y. Cheung, K.S. Cheung and J. Lau; “A low power monolithic AGC with automatic DC offset cancellation for direct conversion hybrid CDMA transceiver used in telemetering”; Circuits and Systems, Proceedings of the 2001 International Symposium on, ISCAS’01; Vol. 4, pp. 390 – 393, May 2001.

    Google Scholar 

  24. Chun-Pang Wu and Hen-Wai Tsao; “A 110-MHz 84-dB CMOS Programmable Gain Amplifier With Integrated RSSI Function”; Solid-State Circuits, IEEE Journal of; Vol. 40, Issue 6, pp. 1249 – 1258, 2005.

    Google Scholar 

  25. C.C. Hsu and J.T. Wu; “A Highly Linear 125-MHz CMOS Switched-Resistor Programmable-Gain Amplifier”; Solid-State Circuits, IEEE Journal of; Vol. 38, Issue 10, Oct. 2003.

    Google Scholar 

  26. S.C. Tsou, C.F. Li, P.C. Huang; “A Low-Power CMOS Linear-in-Decibel Variable Gain Amplifier with Programmable Bandwidth and Stable Group Delay”; Circuits and Systems II: Express Briefs, IEEE Transactions on; Vol. 53, Dec. 2006.

    Google Scholar 

  27. K. Philips and E.C. Dijkmans; “A Variable Gain IF Amplifier with -67dBc IM3 Distortion at 1.4 Vpp Output in 0.25μm CMOS”; 2001 Symp. VLSI Circuits Dig. Tech. Papers; pp. 81 – 82, 2001.

    Google Scholar 

  28. Chunbing Guo, Chi-Wa Lo, Yu-Wing Choi, I. Hsu, T. Kan, D. Leung, A. Chan, H.C. Luong; “A fully integrated 900-MHz CMOS wireless receiver with on-chip RF and IF filters and 79-dB image rejection”; Solid-State Circuits, IEEE Journal of; Vol. 37, Issue 8, pp. 1084 – 1089, Aug. 2002.

    Google Scholar 

  29. Serhii M. Zhak, Michael W. Baker and Rahul Sarpeshkar; “A Low-Power Wide Dynamic Range Envelope Detector”; Solid-State Circuits, IEEE Journal of; Vol. 38, Issue 10, pp. 1750 – 1753, Oct. 2003.

    Google Scholar 

  30. V.W. Leung, P.S Junxiong Deng Gudem, L.E. Larson; “Analysis of envelope signal injection for improvement of RF amplifier intermodulation distortion”; Solid-State Circuits, IEEE Journal of; Vol. 40, Issue 9, pp. 1888 – 1894, Sept. 2005.

    Google Scholar 

  31. J.M. Stevenson, E. Sanchez-Sinencio; “An accurate quality factor tuning scheme for IF and high-Q continuous-time filters”; Solid-State Circuits, IEEE Journal of; Vol. 33, Issue 12, pp. 1970 – 1978, Dec. 1998.

    Google Scholar 

  32. Y.P. Tsividis, V. Gopinathan and L. Toth; “Compandig in signal processing”; Electronic Letters; Vol. 26, pp. 1331 – 1332, Aug. 1990.

    Google Scholar 

  33. F. Behbahani, A. Karimi-Sanjaani, Wee-Guan Tan, A. Roithmeier, J.C. Leete, K. Hoshino, A.A. Abidi; “Adaptive analog IF signal processor for a wide-band CMOS wireless receiver”; Solid-State Circuits, IEEE Journal of; Vol. 36, Issue 8, pp. 1205 – 1217, Aug. 2001.

    Google Scholar 

  34. N. Krishnapura, Y.P. Tsividis; “Noise and power reduction in filters through the use of adjustable biasing”; Solid-State Circuits, IEEE Journal of; Vol. 36, Issue 12, pp. 1912 – 1920, Dec. 2001.

    Google Scholar 

  35. Y. Tsividis, N. Krishnapura, Y. Palascas and L. Toth; “Internally Varying Analog Circuits Minimize Power Dissipation”; Circuits and Devices Magazine, IEEE; Vol. 19, Issue 1, pp. 63 – 72, Jan. 2003.

    Google Scholar 

  36. Seok-Bae Park, James E. Wilson, and Mohammed Ismail, “Peak Detectors for Multistandard Wireless Receivers”, Circuits & Devices Magazine, IEEE, Vol. 22, Issue 6, pp. 6 – 9, Nov.-Dec. 2006.

    Google Scholar 

  37. Michel S. J. Steyaert, Wim Dehaene, Jan Craninckx, M´airt´ın Walsh and Peter Real; “A CMOS Rectifier-Integrator for Amplitude Detection in Hard Disk Servo Loops”; Solid-State Circuits, IEEE Journal of; Vol. 30, Issue 7, pp. 743 – 751, Jul. 1995.

    Google Scholar 

  38. A.J. Peyton and V. Walsh; “Analog Electronics with Op Amps: A Source Book of Practical Circuits”; Cambridge, U.K.: Cambridge Univ. Press, 1993.

    Google Scholar 

  39. R.G. Meyer and W.D. Mack; “Monolithic AGC loop for a 160 Mb/s transimpedance amplifier”; Solid-State Circuits, IEEE Journal of; Vol. 31, Issue 9, pp. 1331 – 1335, Sept. 1996.

    Google Scholar 

  40. H.-C. Chow and I.-H. Wang; “High performance automatic gain control circuit using a S/H peak detector for ASK receiver”; Electronics, Circuits and Systems, 2002. 9th International Conference on; Vol. 2, pp. 429 – 432, Sept. 2002.

    Google Scholar 

  41. J. Silva-Martinez, J. Salcedo-Suner; “A CMOS automatic gain control for hearing aid devices”; Circuits and Systems, 1998. ISCAS ’98. Proceedings of the 1998 IEEE International Symposium on; Vol. 1, pp, 297 – 300, Jun. 1998.

    Google Scholar 

  42. E.A. Crain and M.H. Perrott; “A 3.125 Gb/s limit amplifier in CMOS with 42 dB gain and 1 μs offset compensation”; Solid-State Circuits, IEEE Journal of; Vol. 41, Issue 2, pp. 443 – 451, Feb. 2006.

    Google Scholar 

  43. R.J. Baker, H.W. Li, and D.E. Boyce; “CMOS: Circuit Design, Layout, and Simulation”; New York: Wiley, 1998.

    Google Scholar 

  44. Surachet Khucharoensin and Varakorn Kasemsuwan; “A High Performance CMOS Current-Mode Precision Full-Wave Rectifier”; Circuits and Systems, 2003. ISCAS ’03. Proceedings of the 2003 International Symposium on; Vol. 1, pp. 41 – 44, May 2003.

    Google Scholar 

  45. Rahul Sarpeshkar, Richard F. Lyon and Carver Mead; “A Low-Power Wide-Dynamic-Range Analog VLSI Cochlea”; Analog Integrated Circuits and Signal Processing; Vol. 16, Issue 3, pp. 245 – 274, Aug. 1998.

    Google Scholar 

  46. J.P. Alegre, S. Celma, M.T. Sanz, and J.M. García del Pozo; “Low-ripple fast-settling envelope detector”; Electronics Letters; Vol. 42, Issue 18, pp. 1011 – 1012, Aug. 2006.

    Google Scholar 

  47. J.P. Alegre, S. Celma, B. Calvo and J.M. García del Pozo; “Design of a Novel Envelope Detector for Fast-Settling Circuits”; Instrumentation and Measurements, IEEE Transactions on; Vol. 57, no 1, pp. 4 – 9, Jan. 2008.

    Google Scholar 

  48. S.A. Sanielevici, K.R. Cioffi, B. Ahrari, P.S. Stephenson, D.L. Skoglund, and M. Zargari; “A 900 MHz transceiver chipset for two-way paging applications”; Solid-State Circuits, IEEE Journal of; Vol. 33, Issue 12, pp. 2160 – 2168, Dec. 1998.

    Google Scholar 

  49. H.-Y. Cheung, K.S. Cheung, and J. Lau; “A low power monolithic AGC with automatic DC offset cancellation for direct conversion hybrid CDMA transceiver used in telemetering”; Circuits and Systems, 2001. ISCAS ’01. Proceedings of the 2001 International Symposium on; Vol. 4, pp. 390 – 393, May 2001.

    Google Scholar 

  50. J.P. Alegre, B. Calvo and S. Celma; “A Low-Voltage High-Performance CMOS Feedforward AGC Circuit for Wideband Wireless Receivers”; ETRI Journal; Vol. 30, no 5, pp. 729 – 734, Oct. 2008.

    Google Scholar 

  51. J.P. Alegre, N. Fiebig, S. Celma, S. Halder and B. Calvo; “SiGe Analog AGC Circuit for an 802.11a WLAN Direct Conversion Receiver”; Circuits and Systems II: Express Briefs, IEEE Transactions on; Vol. 56, Issue 2, pp. 93 – 96, 2009.

    Google Scholar 

  52. J.P. Alegre, S. Celma, J.M. García del Pozo and N. Medrano; “Fast-Response Low-Ripple Envelope Follower”; Integration, the VLSI Journal; Vol. 42, Issue 2, pp. 169 – 174, May 2008.

    Google Scholar 

  53. R.J. Baker; “CMOS circuit Design, Layout and Simulation”; IEEE Press Series on Microelectronic Systems, 2005.

    Google Scholar 

  54. H. Elwan, T.B. Tarim, M. Ismail; “Digitally programmable dB-linear CMOS AGC for mixed-signal applications”; IEEE Circuits and Devices Magazine; Vol. 14, Issue 4, pp. 8-11. Jul. 1998.

    Google Scholar 

  55. Willy Hioe, Kenji Maio, Takashi Oshima, Yoshiyuki Shibahara, Takeshi Doi, Kiyoharu Ozaki, and Satoshi Arayashiki; “0.18-_m CMOS Bluetooth Analog Receiver With 88-dBm Sensitivity”; Solid-State Circuits, IEEE Journal of; Vol. 39, Issue 2, pp. 374 – 377, Feb. 2004.

    Google Scholar 

  56. Takashi Oshima, Kenji Maio, Willy Him, Yoshiy& Shibahara, Takeshi Doi; “Automatic tuning of RC filters and fast automatic gain control for CMOS low-IF transceiver”; Custom Integrated Circuits Conference, 2003. Proceedings of the IEEE 2003; pp. 5 – 8, Sept. 2003.

    Google Scholar 

  57. J.P. Alegre, B. Calvo, S. Celma; “A fast compact CMOS feedforward automatic gain control circuit”; Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on; pp. 1504 – 1507, May 2008.

    Google Scholar 

  58. J.M. Khoury; “On the design of constant settling time AGC circuits”; Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on; Vol. 45, Issue 3, pp. 283 – 294, Mar. 1998.

    Google Scholar 

  59. O. Jeon, R.M. Fox, B.A. Myers; “Analog AGC Circuitry for a CMOS WLAN Receiver”; Solid-State Circuits, IEEE Journal of; Vol. 41, Issue 10, pp. 2291-2300, Oct. 2006.

    Google Scholar 

  60. Weihsing Liu, Shen-Iuan Liu and Shui-Ken Wei; “CMOS Differential-Mode Exponential Voltage-To-Current Converter”; Analog Integrated Circuits and Signal Processing; Vol. 45, Issue 2, pp. 163 – 168, Nov. 2005.

    Google Scholar 

  61. Weihsing Liu and Shen-Iuan Liu; “CMOS exponential function generator”; Electronics Letters; Vol. 39, Issue: 1, pp. 1 – 2, Jan. 2003.

    Google Scholar 

  62. A. Motamed, C. Hwang and M. Ismail; “CMOS exponential current-to-voltage converter”; Electronics Letters; Vol. 33, Issue: 12, pp. 998 – 1000, Jun. 1997.

    Google Scholar 

  63. Cheng-Chieh Chang and Shen-Iuan Liu; “Current-mode pseudo-exponential circuit with tunable input range”; Electronics Letters; Vol. 36, Issue: 16, pp. 1335 – 1336, Aug. 2000.

    Google Scholar 

  64. Q.-H. Duong, V. Krizhanovskii, H.-C. Choi, S.-J. Yun, M.-S. Yang and S.-G. Lee; “Low-voltage, high dB-linear, exponential V-V converter”; Electronics Letters; Vol. 40, Issue: 17, pp. 1032 – 1034, Aug. 2004.

    Google Scholar 

  65. W. Liu, S.-I. Liu and S.-K. Wei; “CMOS exponential-control variable gain amplifiers”; Circuits, Devices and Systems, IEE Proceedings; Vol. 151, Issue: 2, pp. 83 – 86, Apr. 2004.

    Google Scholar 

  66. Q.-H. Duong, T.-J. Park, E.-J. Kim, and Sang-Gug Lee; “An All CMOS 743MHz Variable Gain Amplifier for UWB Systems”; Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on; 2006.

    Google Scholar 

  67. B. Gilbert; “Limiting-Logarithmic Amplifiers”; Electronics Laboratories Advanced Engineering Course on RF IC Design for Wireless Communication Systems; Lausanne, Switzerland, Jul. 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Alegre Pérez .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pérez, J., Pueyo, S., López, B. (2011). Basic AGC Cells. In: Automatic Gain Control. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0167-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0167-4_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0166-7

  • Online ISBN: 978-1-4614-0167-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics