Skip to main content

Electric Vehicle Battery Technologies

  • Chapter
  • First Online:
Electric Vehicle Integration into Modern Power Networks

Part of the book series: Power Electronics and Power Systems ((PEPS))

Abstract

This chapter aims at bridging the gap between chemistry scientists and electrical engineers on electric vehicle (EV) batteries. The power and energy of electric propulsion are first reviewed in Sect. 2.2. Commonly used terms to describe battery performance and characterization are then introduced in Sect. 2.3, followed by the review of various battery charging methods and EV charging schemes in Sect. 2.4. The fundamentals of EV battery technologies are addressed in Sect. 2.5. Two currently most common EV battery technologies, namely, nickel metal hydride (NiMH) and lithium-ion (Li-ion), are covered. It is targeted for giving power engineers a basic understanding of battery chemistry. The EV battery modeling is introduced in Sect. 2.6. It is important for power engineers to appreciate the fundamentals of battery chemistry and battery modeling and use it for power electronic interfacing converter design, battery management, and system level studies. Section 2.7 covers the topic on battery characterization including battery model parameter estimation, state of charge (SOC), and state of health (SOH) estimation. The battery aggregation for power grid applications is discussed in Sect. 2.8. The concept of virtual power plant (VPP) for battery aggregation is introduced to support EV’s participation in power markets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Though fuel cell vehicle (FCV) is one of the technologies under consideration of electric-drive vehicles, the durability, high cost, and production and distribution of hydrogen have hindered its development. The US Department of Energy (DOE) dropped its research support for FCV in its budget of fiscal year of 2010 [3].

References

  1. Howell D (2011) 2010 Annual progress report for energy storage R&D, Vehicle Technologies Program, Energy Efficiency and Renewable Energy. U.S. Department of Energy, Washington, DC

    Google Scholar 

  2. Boulanger AG, Chu AC, Maxx S, Waltz DL (2011) Vehicle electrification: status and issues. Proc IEEE 99(6):1116–1138

    Article  Google Scholar 

  3. Xu X, Wang C, Liao G, Yeh CP, Stark W (2009) Development of a plug-in hybrid electric vehicle educational demonstration unit. In: Proceedings of 2009 North American power symposium, Starkville, MS, USA, 4–6 Oct 2009

    Google Scholar 

  4. Corrigan D, Masias A (2011) Batteries for electric and hybrid vehicles. In: Reddy TB (ed) Linden’s handbook of batteries, 4th edn. McGraw Hill, New York

    Google Scholar 

  5. Ehsani M, Gao Y, Emadi A (2010) Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory and design, 2nd edn. CRC, London

    Google Scholar 

  6. USABC (1996) Electric vehicle battery test procedures manual. http://avt.inl.gov/battery/pdf/usabc_manual_rev2.pdf

  7. Coleman M, Hurley WG, Lee CK (2008) An improved battery characterization method using a two-pulse load test. IEEE Trans EC 23(2):708–713

    Google Scholar 

  8. Dhameja S (2002) Electric vehicle battery systems. Newnes, Boston

    Google Scholar 

  9. Pokrzywa J (2010) SAE Taipei: SAE ground vehicle standards SmartGrid. http://sae-taipei.org.tw/image/1283265726.pdf

  10. Rocky Mountain Institute (2008) Smart garage Charrette pre-read v2.0. http://move.rmi.org/files/smartgarage/PreRead_v2_Core-1.pdf

  11. http://www.peve.jp/e/hevkinzoku.html

  12. Higashimoto K, Homma H, Uemura Y, Kawai H, Saibara S, Hirinaka K (2010) Automotive lithium-ion battery. Hitachi Hyoron 92(12):30–33

    Google Scholar 

  13. Moss PL, Au G, Plichta EJ, Zheng JP (2009) Investigation of solid electrolyte interface layer development during continuous cycling using ac impedance spectra and micro-structural analysis. J Power Sources 189:644–648

    Article  Google Scholar 

  14. Strunz K, Louie H (2009) Cache energy control for storage: power system integration and education based on analogies derived from computer engineering. IEEE Trans Power Syst 24(1):12–19

    Article  Google Scholar 

  15. http://www.uscar.org/guest/article_view.php?articles_id=85

  16. Ovshinsky SR, Fetcenko MA, Reichman B, Young K, Chao B, Im J (1997) US Patent 5,616,432

    Google Scholar 

  17. Ovshinsky SR, Corrigan D, Venkatesan S, Young R, Fierro C, Fetcenko MA (1994) US Patent 5,348,822

    Google Scholar 

  18. Esaka T, Sakagucji H, Kobayashi S (2004) Hydrogen storage in protpn-conductive perovskite-type oxide and their application to nickel-hydrogen batteries. Solid State Ionics 166(3–4):351–357

    Article  Google Scholar 

  19. Deng G, Chen Y, Tao M, Wu C, Shen X, Yang H, Liu M (2010) Electrochemical properties and hydrogen storage mechanism of perovskite-type oxide LaFeO3 as a negative electrode for Ni/MH batteries. Electrochim Acta 55 (3):1120–1124

    Article  Google Scholar 

  20. http://www.khi.co.jp/english/gigacell/index.html

  21. West JK, Higgins MP, Regalado J, George A (2009) US Patent Application 20090142655

    Google Scholar 

  22. http://www.arl.army.mil/www/pages/556/1109TFSHPCathodeLiIonBatteries.pdf

  23. Sun Q, Li X, Wang Z, Ji Y (2009) Synthesis and electrochemical performance of 5V spinel LiNi0.5Mn1.5O4 prepared by solid-state reaction. Trans Nonferrous Met Soc Chin 19:176–181

    Article  Google Scholar 

  24. Fetcenko MA (2011) In: Presentation in Batteries 2011, Cannes Mandelieu, France, 20–28 Sep 2011

    Google Scholar 

  25. Mitchell RR, Gallany BM, Thompson CV, Yang S (2011) All-carbon-nanofiber electrodes for high-energy, rechargeable Li-O2 batteries. Energy Environ Sci 4:2952–2958

    Article  Google Scholar 

  26. Dubarry M, Vuillaume N, Liaw BY (2009) From single cell model to battery pack simulation for Li-ion batteries. J Power Sources 186:500–507

    Article  Google Scholar 

  27. Song L, Evans JW (2000) Electrochemical-thermal model of lithium polymer batteries. J Electrochem Soc 147:2086–2095

    Article  Google Scholar 

  28. Min C, Gabriel AR (2006) Accurate electrical battery model capable of predicting runtime and I–V performance. IEEE Trans Energy Conversion 21(2):504–511

    Article  Google Scholar 

  29. Gomadam PM, Weidner JW, Dougal RA, White RE (2002) Mathematical modeling of lithium-ion and nickel battery systems. J Power Sources 110(2):267–24

    Article  Google Scholar 

  30. Dennis DW, Battaglia VS, Belanger A (2002) Electrochemical modeling of lithium polymer batteries. J Power Source 110(2):310–320

    Article  Google Scholar 

  31. Newman J, Thomas KE, Hafezi H, Wheeler DR (2003) Modeling of lithium-ion batteries. J Power Sources 119–121:838–843

    Article  Google Scholar 

  32. Rynkiewicz R (1999) Discharge and charge modeling of lead acid batteries. Proc Appl Power Electron Conf Expo 2:707–710

    Google Scholar 

  33. Rakhmatov D, Vrudhula S, Wallach DA (2003) A model for battery lifetime analysis for organizing applications on a pocket computer. IEEE Trans VLSI Syst 11(6):1019–1030

    Article  Google Scholar 

  34. Rong P, Pedram M (2003) An analytical model for predicting the remaining battery capacity of lithium-ion batteries. In: Proceedings of design, automation, and test in Europe conference and exhibition, pp 1148–1149

    Google Scholar 

  35. Pascoe PE, Anbuky AH (2004) VRLA battery discharge reserve time estimation. IEEE Trans Power Electron 19(6):1515–1522

    Article  Google Scholar 

  36. Salameh ZM, Casacca MA, Lynch WA (1992) A mathematical model for lead-acid batteries. IEEE Trans Energy Convers 7(1):93–98

    Article  Google Scholar 

  37. Valvo M, Wicks FE, Robertson D, Rudin S (1996) Development and application of an improved equivalent circuit model of a lead acid battery. Proc Energy Convers Eng Conf 2:1159–1163

    Google Scholar 

  38. Ceraolo M (2000) New dynamical models of lead-acid batteries. IEEE Trans Power Syst 15(4):1184–1190

    Article  Google Scholar 

  39. Barsali S, Ceraolo M (2002) Dynamical models of lead-acid batteries: implementation issues. IEEE Trans Energy Convers 17(1):16–23

    Article  Google Scholar 

  40. Schweighofer B, Raab KM, Brasseur G (2003) Modeling of high power automotive batteries by the use of an automated test system. IEEE Trans Instrum Meas 52(4):1087–1091

    Article  Google Scholar 

  41. Gao L, Liu S, Dougal RA (2002) Dynamic lithium-ion battery model for system simulation. IEEE Trans Compon Packag Technol 25(3):495–505

    Article  Google Scholar 

  42. Baudry P, Neri M, Gueguen M, Lonchampt G (1995) Electro-thermal modeling of polymer lithium batteries for starting period and pulse power. J Power Sources 54(2):393–396

    Article  Google Scholar 

  43. Abu-Sharkh S, Doerffel D (2004) Rapid test and non-linear model characterization of solid-state lithium-ion batteries. J Power Sources 130:266–274

    Article  Google Scholar 

  44. Bard A, Faulkner L (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  45. Doyle M, Newman J, Gozdz AS, Schmutz CN, Tarascon JM (1996) Comparison of modelling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc 143:1890

    Article  Google Scholar 

  46. Tremblay O, Dessaint L-A (2009) Experimental validation of a battery dynamic model for EV applications. In: EVS24 international battery, hybrid and fuel cell electric vehicle symposium, Stavanger, Norway, 13–16 May 2009, World Electric Vehicle J 3

    Google Scholar 

  47. Johnson VH (2001) Battery performance models in ADVISOR. J Power Sources 110:321–329

    Article  Google Scholar 

  48. Wang C, Nehrir MH, Shaw SR (2005) Dynamic models and model validation for PEM fuel cells using electrical circuits. IEEE Trans Energy Convers 20(2):442–451

    Article  Google Scholar 

  49. Barbier C, Meyer H, Nogarede B, Bensaoud S (1994) A battery state of charge indicator for electric vehicle. In: Proceedings of the international conference of the institution of mechanical engineers, automotive electronics, London, UK, 17–19 May 1994, pp 29–34

    Google Scholar 

  50. Dai HF, Wei XZ, Sun ZC (2006) Online SOC estimation of high-power lithium-ion batteries used on HEVs. In: Proceedings of IEEE ICVES 2006, pp 342–347

    Google Scholar 

  51. Giglioli R, Pelacchi P, Raugi M, Zini G (1988) A state of charge observer for lead-acid batteries. Energia Elettrica 65(1):27–33

    Google Scholar 

  52. Plett G (2004) Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 1: Background. J Power Sources 134(2):252–261

    Article  Google Scholar 

  53. Rodrigues S, Munichandraiah N, Shukla A (2000) A review of state-of-charge indication of batteries by means of ac impedance measurements. J Power Sources 87(1/2):12–20

    Article  Google Scholar 

  54. Kuo BC (1995) Digital control systems, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  55. Barsoukov E, Kim J, Yoon C, Lee H (1999) Universal battery parameterization to yield a non-linear equivalent circuit valid for battery simulation at arbitrary load. J Power Sources 83(1/2):61–70

    Article  Google Scholar 

  56. Plett G (2004) Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2. Modeling and identification. J Power Sources 134(2):262–276

    Article  Google Scholar 

  57. Takano K, Nozaki K, Saito Y, Negishi A, Kato K, Yamaguchi Y (2000) Simulation study of electrical dynamic characteristics of lithium-ion battery. J Power Sources 90(2):214.223

    Article  Google Scholar 

  58. Ljung L (1987) System identification: theory for the user. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  59. Wang LY, Yin G, J-f Z, Zhao Y (2010) System identification with quantized observations. Birkhauser, Boston, MA. ISBN 978-0-8176-4955-5

    Book  MATH  Google Scholar 

  60. Sitterly M, Wang LY, Yin G, Wang C (2011) Enhanced identification of battery models for real-time battery management. IEEE Trans Sustain Energy 2:300–308

    Article  Google Scholar 

  61. Moore SW, Schneider P (2001) A review of cell equalization methods for lithium ion and lithium polymer battery systems. SAE Publication, Troy, MI

    Book  Google Scholar 

  62. Linden D, Reddy T (2001) Handbook of batteries, 3rd edn. McGraw Hill, New York

    Google Scholar 

  63. Kutkut NH, Wiegman HLN, Divan DM, Novotny DW (1999) Design considerations for charge equalization of an electric vehicle battery system. IEEE Trans Ind Appl 35:28–35

    Article  Google Scholar 

  64. Tang M, Stuart T (2000) Selective buck-boost equalizer for series battery packs. IEEE Trans Aerospace Electron Syst 36:201–211

    Article  Google Scholar 

  65. Pudjianto D, Ramsay C, Strbac G (2008) Microgrids and virtual power plants: concepts to support the integration of distributed energy resources. Proc Inst Mech Eng A J Power Energy 222(7):731–741

    Article  Google Scholar 

  66. Karfopoulos E, Tsikalakis A, Karagiorgis G, Dimeas A, Christodoulou C, Tomtsi T, Hatziargyriou N (2009) Description of the off-line simulations. Task and results presentation. EUDEEP Project WP4&5, Task Force 3, Jan 2009

    Google Scholar 

  67. Raab AF, Ferdowsi M, Karfopoulos E, Grau Unda I, Skarvelis-Kazakos S, Papado poulos P, Abbasi E, Cipcigan LM, Jenkins N, Hatziargyriou N, Strunz K (2011) Virtual power plant control concepts with electric vehicles. In: 16th International conference on intelligent system applications to power systems, Hersonissos, Greece, Sep 2011

    Google Scholar 

  68. http://www.mathworks.com/help/toolbox/physmod/powersys/ref/battery.html

  69. Lezhang L, Wang LY, Chen Z, Wang C, Lin F, Wang H (2012) Integrated system identification and state-of-charge estimation of battery systems. IEEE Trans Energy Conversion (In press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caisheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Young, K., Wang, C., Wang, L.Y., Strunz, K. (2013). Electric Vehicle Battery Technologies. In: Garcia-Valle, R., Peças Lopes, J. (eds) Electric Vehicle Integration into Modern Power Networks. Power Electronics and Power Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0134-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0134-6_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0133-9

  • Online ISBN: 978-1-4614-0134-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics