Skip to main content

Constrained Tri-Connected Planar Straight Line Graphs

  • Chapter
  • First Online:
Thirty Essays on Geometric Graph Theory

Abstract

It is known that for any set V of n ≥ 4 points in the plane, not in convex position, there is a 3-connected planar straight line graph G = (V, E) with at most 2n − 2 edges, and this bound is the best possible. We show that the upper bound | E | ≤ 2n continues to hold if G = (V, E) is constrained to contain a given graph G 0 = (V, E 0), which is either a 1-factor (i.e., disjoint line segments) or a 2-factor (i.e., a collection of simple polygons), but no edge in E 0 is a proper diagonal of the convex hull of V. Since there are 1- and 2-factors with n vertices for which any 3-connected augmentation has at least 2n − 2 edges, our bound is nearly tight in these cases. We also examine possible conditions under which this bound may be improved, such as when G 0 is a collection of interior-disjoint convex polygons in a triangular container.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Aichholzer, S. Bereg, A. Dumitrescu, A. García, C. Huemer, F. Hurtado, M. Kano, A. Márquez, D. Rappaport, S. Smorodinsky, D. L. Souvaine, J. Urrutia, D.R. Wood, Compatible geometric matchings. Comput. Geom.: Theor. Appl. 42, 617–626 (2009)

    Google Scholar 

  2. M. Al-Jubeh, M. Ishaque, K. Rédei, D.L. Souvaine, C.D. Tóth, Augmenting the edge connectivity of planar straight line graphs to three. Algorithmica

    Google Scholar 

  3. K.P. Eswaran, R.E. Tarjan, Augmentation problems. SIAM J. Comput. 5, 653–665 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. García, F. Hurtado, C. Huemer, J. Tejel, P. Valtr, On triconnected and cubic plane graphs on given point sets. Comput. Geom.: Theor. Appl. 42, 913–922 (2009)

    Google Scholar 

  5. M. Hoffmann, C.D. Tóth, Segment endpoint visibility graphs are Hamiltonian. Comput. Geom.: Theor. Appl. 26, 47–68 (2003)

    Google Scholar 

  6. T.-S. Hsu, V. Ramachandran, On finding a minimum augmentation to biconnect a graph. SIAM J. Comput. 22(5), 889–912 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. T.-S. Hsu, Simpler and faster biconnectivity augmentation. J. Algorithms 45(1), 55–71 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Ishaque, D.L. Souvaine, C.D. Tth, Disjoint compatible geometric matchings, Discrete and Computational Geometry, in print. DOI 10.1007/s00454-012-9466-9 (2012)

    Google Scholar 

  9. B. Jackson, T. Jordán, Independence free graphs and vertex connectivity augmentation. J. Comb. Theor. Ser. B 94, 31–77 (2005)

    Article  MATH  Google Scholar 

  10. G. Kant, H.L. Bodlaender, Planar graph augmentation problems, in Proceedings of the 2nd Workshop on Algorithms and Data Structures. Lecture Notes in Computer Science, vol. 519 (Springer-Verlag, Berlin, 1991), pp. 286–298

    Google Scholar 

  11. J. Plesník, Minimum block containing a given graph. Arch. Math. 21, 668–672 (1976)

    Article  Google Scholar 

  12. I. Rutter, A. Wolff, Augmenting the connectivity of planar and geometric graphs. in Proceedings of the International Conference on Topological and Geometric Graph Theory, Paris. Electron. Notes Discr. Math. 31, 53–56 (2008)

    Google Scholar 

  13. C.D. Tóth, P. Valtr, Augmenting the edge connectivity of planar straight line graphs to three, in 13th Spanish Meeting on Computational Geometry, Zaragoza, Spain, 2009

    Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referee who pointed out several errors and omissions in an earlier version of the proof of Lemma 3.1.

This material is based upon work supported by the National Science Foundation under Grant No. 0830734. Research by C. D. Tóth was also supported by NSERC grant RGPIN 35586. Preliminary results have been presented at the 26th European Workshop on Computational Geometry (2010, Dortmund) and at the 20th Annual Fall Workshop on Computational Geometry (2010, Stony Brook, NY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba D. Tóth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Al-Jubeh, M., Barequet, G., Ishaque, M., Souvaine, D.L., Tóth, C.D., Winslow, A. (2013). Constrained Tri-Connected Planar Straight Line Graphs. In: Pach, J. (eds) Thirty Essays on Geometric Graph Theory. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0110-0_5

Download citation

Publish with us

Policies and ethics