Skip to main content

Rectangle and Square Representations of Planar Graphs

  • Chapter
  • First Online:

Abstract

In the first part of this survey, we consider planar graphs that can be represented by a dissections of a rectangle into rectangles. In rectangular drawings, the corners of the rectangles represent the vertices. The graph obtained by taking the rectangles as vertices and contacts as edges is the rectangular dual. In visibility graphs and segment contact graphs, the vertices correspond to horizontal or to horizontal and vertical segments of the dissection. Special orientations of graphs turn out to be helpful when dealing with characterization and representation questions. Therefore, we look at orientations with prescribed degrees, bipolar orientations, separating decompositions, and transversal structures.

In the second part, we ask for representations by a dissections of a rectangle into squares. We review results by Brooks et al. [The dissection of rectangles into squares. Duke Math J 7:312–340 (1940)], Kenyon [Tilings and discrete Dirichlet problems. Isr J Math 105:61–84 (1998)], and Schramm [Square tilings with prescribed combinatorics. Isr J Math 84:97–118 (1993)] and discuss a technique of computing squarings via solutions of systems of linear equations.

Mathematics Subject Classification (2010): 05C10, 05C62, 52C15.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.J. Alam, T. Biedl, S. Felsner, M. Kaufmann, S.G. Kobourov, T. Ueckerdt, Computing cartograms with optimal complexity. In Proceedings of the 2012 symposuim on Computational Geometry (SoCG’12). ACM, Chapel Hill, North Carolina, USA, pp. 21–30 (2012)

    Google Scholar 

  2. A.L. Buchsbaum, E.R. Gansner, C.M. Procopiuc, S. Venkatasubramanian, Rectangular layouts and contact graphs. ACM Trans. Algorithms 4(1), 8–28 (2008)

    Article  MathSciNet  Google Scholar 

  3. I. Benjamini, L. Lovász, Harmonic and analytic functions on graphs. J. Geom. 76, 3–15 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Bollobas, Modern Graph Theory (Springer-Verlag, New york, 2002)

    Google Scholar 

  5. J. Bhasker, S. Sahni, A linear algorithm to find a rectangular dual of a planar triangulated graph. Algorithmica 3, 247–278 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. G.R. Brightwell, E.R. Scheinerman, Representations of planar graphs. SIAM J. Discr. Math. 6, 214–229 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. R.L. Brooks, C.A.B. Smith, A.H. Stone, W.T. Tutte, The dissection of rectangles into squares. Duke Math. J. 7, 312–340 (1940)

    Article  MathSciNet  Google Scholar 

  8. J. Chalopin, D. Gonçalves, Every planar graph is the intersection graph of segments in the plane, in Proceedings of the 41st ACM Symposium on Theory of Computing (STOC), Bethesda, Maryland, USA, pp. 631–638 (2009)

    Google Scholar 

  9. M. Dehn, Über zerlegung von rechtecken in rechtecke. Math. Ann. 57, 314–332 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis, Graph Drawing (Prentice Hall, Englewood Cliffs, NJ, 1999)

    MATH  Google Scholar 

  11. H. de Fraysseix, P. Ossona de Mendez, On topological aspects of orientation. Discr. Math. 229, 57–72 (2001)

    Article  MATH  Google Scholar 

  12. H. de Fraysseix, P. Ossona de Mendez, J. Pach, A left-first search algorithm for planar graphs. Discr. Comput. Geom. 13, 459–468 (1995)

    Article  MATH  Google Scholar 

  13. H. de Fraysseix, P. Ossona de Mendez, P. Rosenstiehl, Bipolar orientations revisited. Discr. Appl. Math. 56, 157–179 (1995)

    Article  MATH  Google Scholar 

  14. P.G. Doyle, J. Snell, Random Walks and Electric Networks (Math. Assoc. of America, 1984). http://math.dartmouth.edu/doyle/docs/walks/walks.pdf. Accessed on Sept 25, 2012

  15. M. Eiglsperger, S. Fekete, G.W. Klau, Orthogonal graph drawing, in Drawing Graphs: Methods and Models. LNCS, vol. 2025 (Tutorial) (Springer-Verlag, 2001), pp. 121–171

    Google Scholar 

  16. D. Eppstein, E. Mumford, B. Speckmann, K. Verbeek, Area-universal rectangular layouts, in Proceedings of the 25th Symposium on Computational Geometry, Aarhus, Denmark, pp. 267–276 (2009)

    Google Scholar 

  17. S. Felsner, Geometric Graphs and Arrangements. Advanced Lectures in Mathematics (Vieweg Verlag Wiesbaden, 2004)

    Google Scholar 

  18. S. Felsner, Lattice structures from planar graphs. Electr. J. Comb. 11(R15), 24 pp. (2004)

    Google Scholar 

  19. S. Felsner, É. Fusy, M. Noy, D. Orden, Bijections for Baxter families and related objects. J. Comb. Theor. A 18, 993–1020 (2011)

    Article  MathSciNet  Google Scholar 

  20. S. Felsner, C. Huemer, S. Kappes, D. Orden, Binary labelings for plane quadrangulations and their relatives. Discr. Math. Theor. Comput. Sci. 12(3), 115–138 (2010)

    MathSciNet  Google Scholar 

  21. J.-H. Fan, C.-C. Lin, H.-I. Lu, H.-C. Yen, Width-optimal visibility representations of plane graphs, in Proceedings of the 18th International Conference on Algebraic and Computation (ISAAC). LNCS, vol. 4835 (Springer, 2007), pp. 160–171

    Google Scholar 

  22. E. Fusy, Combinatoire des cartes planaires et applications algorithmiques. Ph.D. thesis, LIX Ecole Polytechnique, 2007. http://www.lix.polytechnique.fr/fusy/Articles/these\_eric\_fusy.pdf. Accessed on Sept 25, 2012

  23. E. Fusy, Transversal structures on triangulations: a combinatorial study and straight-line drawings. Discr. Math. 309(7), 1870–1894 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Graver, B. Servatius, H. Servatius, Combinatorial Rigidity. Grad. Stud. in Math., vol. 2 (American Math. Soc., Providence, RI, 1993)

    Google Scholar 

  25. X. He, On finding the rectangular duals of planar triangular graphs. SIAM J. Comput. 22(6), 1218–1226 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Hliněný, Contact graphs of line segments are NP-complete. Discr. Math. 235, 95–106 (2001)

    Article  MATH  Google Scholar 

  27. I.-A. Hartman, I. Newman, R. Ziv, On grid intersection graphs. Discr. Math. 87, 41–52 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Haas, D. Orden, G. Rote, F. Santos, B. Servatius, H. Servatius, D. Souvaine, I. Streinu, W. Whiteley, Planar minimally rigid graphs and pseudo-triangulations. Comput. Geom. 31, 31–61 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. X. He, H. Zhang, Nearly optimal visibility representations of plane graphs. SIAM J. Discr. Math. 22, 1364–1380 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Kenyon, Tilings and discrete Dirichlet problems. Isr. J. Math. 105, 61–84 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Kant, X. He, Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theor. Comput. Sci. 172, 175–193 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. G. Kirchhoff, Über die Auflösung der lichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)

    Google Scholar 

  33. K. Koźmiński, E. Kinnen, Rectangular duals of planar graphs. Networks 15, 145–157 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Kratochvíl, A. Kuběna, On intersection representations of co-planar graphs. Discr. Math. 178, 251–255 (1998)

    Article  MATH  Google Scholar 

  35. P. Koebe, Kontaktprobleme der konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 88, 141–164 (1936)

    Google Scholar 

  36. R.W. Kenyon, S. Sheffield, Dimers, tilings and trees. J. Comb. Theor. Ser. B 92, 295–317 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. C.-C. Liao, H.-I. Lu, H.-C. Yen, Compact floor-planning via orderly spanning trees. J. Algorithms 48(2), 441–451 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. L. Lovász, Geometric representations of graphs. http://www.cs.elte.hu/lovasz/geomrep.pdf. Draft version 11 Dec 2009

  39. A. Lee, I. Streinu, Pebble game algorithms and sparse graphs. Discr. Math. 308, 1425–1437 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. K. Miura, H. Haga, T. Nishizeki, Inner rectangular drawings of plane graphs. Int. J. Comput. Geom. Appl. 16(2–3), 249–270 (2006) [in English]

    Google Scholar 

  41. G.L. Miller, J. Naor, Flow in planar graphs with multiple sources and sinks. SIAM J. Comput. 24, 1002–1017 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Mozes, C. Wulff-Nilsen, Shortest paths in planar graphs with real lengths in \(\mathcal{O}({n\log }^{2}n/\log \log n)\) time, in ESA 2010. LNCS, vol. 6347 (Springer, 2010), pp. 206–217

    Google Scholar 

  43. T. Nishiseki, M.S. Rhaman, Planar Graph Drawing (World Scientific, Singapore, 2004)

    Google Scholar 

  44. M. Rahman, T. Nishizeki, S. Ghosh, Rectangular drawings of planar graphs. J. Algorithms 50(1), 62–78 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Rahman, S.-i. Nakano, T. Nishizeki, Box-rectangular drawings of plane graphs. J. Algorithms 37(2), 363–398 (2000)

    Google Scholar 

  46. P. Rosenstiehl, Embedding in the plane with orientation constraints: the angle graph. Ann. NY Acad. Sci. 555, 340–346 (1989)

    Article  MathSciNet  Google Scholar 

  47. P. Rosenstiehl, R.E. Tarjan, Rectilinear planar layouts and bipolar orientations of planar graphs, Discr. Comput. Geom. 1, 343–353 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  48. H. Sachs, Coin graphs, polyhedra, and conformal mapping, Discr. Math. 134(1–3), 133–138 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  49. O. Schramm, Square tilings with prescribed combinatorics. Isr. J. Math. 84, 97–118 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Skinner, C. Smith, W. Tutte, On the dissection of rectangles into right-angled isosceles triangles, J. Comb. Theor. Ser. B 80, 277–319 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  51. K. Stephenson, Introduction to Circle Packing: The Theory of Discrete Analytic Functions (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  52. S. Sadasivam, H. Zhang, NP-completeness of st-orientations for plane graphs. Theor. Comput. Sci. 411, 995–1003 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. R. Tamassia, On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16, 421–444 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  54. C. Thomassen, Plane representations of graphs, in Progress in Graph Theory, ed. by Bondy, Murty (Academic Press, 1984), pp. 336–342

    Google Scholar 

  55. R. Tamassia, I.G. Tollis, A unified approach to visibility representations of planar graphs. Discr. Comput. Geom. 1, 321–341 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  56. W. Tutte, The dissection of equilateral triangles into equilateral triangles. Proc. Camb. Phil. Soc. 44, 463–482 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  57. W.T. Tutte, Squaring the square, in 2nd Scientific American Book of Mathematical Puzzles and Diversions, ed. by M. Gardner (University of Chicago Press, Chicago, 1987). http://www.squaring.net/history_theory/brooks_smith_stone_tutte_II.html. Accessed on Sept 25, 2012

  58. T. Ueckerdt, Geometric representations of graphs with low polygonal complexity. Ph.D. thesis, Technische Universität Berlin, 2011

    Google Scholar 

  59. P. Ungar, On diagrams representing graphs. J. Lond. Math. Soc. 28, 336–342 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  60. H. Zhang, X. He, Visibility representation of plane graphs via canonical ordering tree. Inform. Process. Lett. 96, 41–48 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I thank Thomas Picchetti for his implementation of the squaring algorithm of Sect. 5.1 and Julia Rucker and Torsten Ueckerdt for helpful discussions and their continuing interest in the topic. My thanks also go to Janos Pach for encouraging me to write about this topic and to the Bernoulli Centre for its hospitality.

This work was partially supported by DFG Grant FE-340/7-2 and the EUROGIGA Project GraDR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Felsner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Felsner, S. (2013). Rectangle and Square Representations of Planar Graphs. In: Pach, J. (eds) Thirty Essays on Geometric Graph Theory. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0110-0_12

Download citation

Publish with us

Policies and ethics