Skip to main content

Blood Perfusion in Solid Tumor with “Normalized” Microvasculature

  • Chapter
  • First Online:
Book cover Modeling Tumor Vasculature
  • 883 Accesses

Abstract

Antitumor therapies rely on the transport of therapeutic medicines or diagnostic agents to tumor cells via the bloodstream and tumor interstitium. Unlike normal blood vessels, tumor vasculature has abnormal organization, structure, and function. Tumor vessels are leaky and blood flow is heterogeneous and often compromised. Vascular hyperpermeability and the lack of functional lymphatic vessels inside tumors cause elevation of interstitial fluid pressure (IFP) in solid tumors (Boucher et al. 1990; Jain et al. 2007). These characteristics cause abnormal microenvironment in tumors and form a physiological barrier to the delivery of therapeutic agents to tumors. Furthermore, elevated tumor IFP increases fluid flow from the tumor margin into the peri-tumor area and may facilitate peri-tumor lymphatic hyperplasia and metastasis (Jain et al. 2007; Fukumura et al. 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarcon T, Byrneb HM, Mainia PK (2003) A cellular automaton model for tumor. growth in inhomogeneous environment. J Theor Biol 225, 257–274.

    CAS  PubMed  Google Scholar 

  • Alarcon T, Owen MR, Byrne HM, Maini PK (2006) Multiscale modeling of tumor growth and therapy: the influence of vessel normalisation on chemotherapy. Computational and Mathematical Methods in Medicine 7, 85–119.

    Google Scholar 

  • Anderson ARA, Chaplain MAJ (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bulletin of Mathematical Biology 60, 857–900.

    CAS  PubMed  Google Scholar 

  • Anderson ARA, Chaplain MAJ et al (2000) A gradient-driven mathematical model of anti-angiogenesis. Mathematical and Computer 32, 1141–1152.

    Google Scholar 

  • Bartha K, Rieger H (2006) Vascular network remodeling via vessel cooption, regression and growth in tumors. J Theor Biol 241, 903–918.

    CAS  PubMed  Google Scholar 

  • Benjamin LE, et al (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor with drawal. J Clin Invest, 103(2): 159–165.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boucher Y, et al (1990) Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 50, 4478–4484.

    CAS  PubMed  Google Scholar 

  • Bray D (1992) Cell Movements. Garland Publishing, New York.

    Google Scholar 

  • Chaplain MAJ, McDougall SR, Anderson ARA (2006) Mathematical modeling of tumor-induced angiogenesis. Annu Rev Biomed Eng 8, 233–257.

    CAS  PubMed  Google Scholar 

  • Chang YS et al (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA, 97: 14608–14613.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darland DC, D’Amore P (1999) Blood vessel maturation: Vascular development comes of age. J Clin Invest, 103(2): 157–158.

    CAS  PubMed  PubMed Central  Google Scholar 

  • di Tomaso E et al (2005) Mosaic tumor vessels: cellular basis and ultrastructure of focal regions lacking endothelial cell markers. Cancer Res, 65: 5740–5749.

    PubMed  Google Scholar 

  • Donnelly EF, Geng L, Wojcicki WE, Fleischer AC, Hallahan DE (2001) Quantified Power Doppler US of Tumor Blood Flow Correlates with Microscopic Quantification of Tumor Blood Vessels. Radiology 219, 166–170.

    CAS  PubMed  Google Scholar 

  • Duval H, Harris M, Li J et al (2003) New insights into the function and regulation of endothelial cell apoptosis. Angiogenesis 6, 171–183.

    CAS  PubMed  Google Scholar 

  • Eriksson K, Magnusson P, Dixelius J et al (2003) Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and VEGF without interfering with specific intracellular signal transduction pathways. FEBS Letters 536, 19–24.

    CAS  PubMed  Google Scholar 

  • Folkman J (2000) Tumor angiogenesis. In: Holland, J.F., et al. (Ed.), Cancer Medicine. B.C. Decker Inc., Ontario, Canada, 132–152.

    Google Scholar 

  • Fukumura D, Jain RK (2007) Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvas Res 74, 72–84.

    CAS  Google Scholar 

  • Gao H, Xu SX, Cai Y et al (2006) Numerical simulation of tumor-induced angiogenesis in and out of tumor incorporating mechanical effects. Medical Biomechanics, 21(1): 2–7 (in Chinese).

    Google Scholar 

  • Griffon-Etienne G, Boucher Y, Brekken C et al (1999) Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res 59, 3776–3782.

    CAS  PubMed  Google Scholar 

  • Hamberg LM, Kristjansen PE, Hunter GJ, Wolf GL, Jain RK (1994) Spatial heterogeneity in tumor perfusion measured with functional computed tomography at 0.05 microliter resolution. Cancer Res 54, 6032–6036.

    CAS  PubMed  Google Scholar 

  • Herbst RS et al (2002) Development of biologic markers of response and assessment of antiangiogenic activity in a clinical trial of human recombinant endostatin. J Clin Oncol 20, 3804–3814.

    CAS  PubMed  Google Scholar 

  • Huber PE et al (2005) Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chemotherapy. Cancer Res 65, 3643–3655.

    CAS  PubMed  Google Scholar 

  • Jain RK et al (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3, 24–40.

    CAS  PubMed  Google Scholar 

  • Jain RK, Tong RT, Munn LL (2007) Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: Insights from a mathematical model. Cancer Res 67(6), 2729–2735.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kedem O, Katchalsky A (1958) Thermodynamic analysis of permeability of biological membranes to non-electrolytes. Biochim Biophs Acta, 27: 229–246.

    CAS  Google Scholar 

  • Lee CG, Heijn M, di Tomaso E et al (2000) Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60, 5565–5570.

    CAS  PubMed  Google Scholar 

  • Levine HA, Pamuk S, Sleeman BD et al (2001) Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull Math Biol 63, 801–863.

    CAS  PubMed  Google Scholar 

  • Meeson A, Palmer M, Calfon M et al (1996) A relationship between apoptosis and flow during programmed capillary regression is revealed by vital analysis. Development 122, 3929–3938.

    CAS  PubMed  Google Scholar 

  • Macklin P, Lowengrub J (2007) Nonlinear simulation of the effect of the microenvironment on tumor growth. J Theor Biol 245, 677–704.

    CAS  PubMed  Google Scholar 

  • McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med, 9, 713–725.

    CAS  PubMed  Google Scholar 

  • McDougall SR, Anderson ARA, Chaplain MAJ, Sherratt JA (2002) Mathematical modeling of flow through vascular networks: Implications for tumor-induced angiogenesis and chemotherapy strategies. Bull Math Biol 64, 673–702.

    CAS  PubMed  Google Scholar 

  • McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical Modeling of Dynamic Adaptive Tumor-Induced Angiogenesis: Clinical Implications and Therapeutic Targeting Strategies. J Theor Biol 241, 564–589.

    PubMed  Google Scholar 

  • Milkiewicz M, Brown MD, Egginton S et al (2001) Association between shear stress, angiogenesis, and VEGF in skeletal muscles in vivo. Microcirculation 8, 229–241.

    CAS  PubMed  Google Scholar 

  • Netti PA, Roberge S, Boucher Y, Baxter LT, Jain RK (1996) Effect of transvascular fluid exchange on pressure–flow relationship in tumors: a proposed mechanism for tumor blood flow heterogeneity. Microvas Res 52, 27–46.

    CAS  Google Scholar 

  • Netti PA, Baxter LT, Boucher Y (1997) Macro- and Microscopic Fluid Transport in Living Tissues: Application to Solid Tumors. AIChE Journal 43(3), 818–834.

    CAS  Google Scholar 

  • O’Reilly MS, Holmgren L, Shing Y et al (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328.

    PubMed  Google Scholar 

  • O’Reilly MS, Boehm T, Shing Y et al (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285.

    PubMed  Google Scholar 

  • Pries AR, Secomb TW, Gessner T et al (1994) Resistance to blood flow in microvessels in vivo. Circulation Res 75, 904–915.

    CAS  PubMed  Google Scholar 

  • Segura I, Serrano A, De Buitrago CG et al (2002) Inhibition of programmed cell death impairs in vitro vascular-like structure formation and reduces in vivo angiogenesis. FASEB J 16, 833–841.

    CAS  PubMed  Google Scholar 

  • Sherratt JA, Murray JD (1990) Models of epidermal wound healing. Proc Roy Soe Lond B241, 29–36.

    Google Scholar 

  • Stéphanou A, McDougall SR, Anderson ARA, Chaplain MAJ (2005) Mathematical Modeling of Flow in 2D and 3D Vascular Networks: Applications to Anti-angiogenic and Chemotherapeutic Drug Strategies. Math Comput Model 41, 1137–1156.

    Google Scholar 

  • Stéphanou A, McDougall SR, Anderson, ARA, Chaplain MAJ (2006) Mathematical modeling of the influence of blood rheological properties upon adaptive tumor-induced angiogenesis. Math Comput Model 44, 96–123.

    Google Scholar 

  • Swabb EA, Wei J, Gullino PM (1974) Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations. Acta Physiol Scand 131, 441–428.

    Google Scholar 

  • Tee D, DiStefano III J (2004) Simulation of tumor-induced angiogenesis and its response to anti-angiogenic drug treatment: mode of drug delivery and clearance rate dependencies. J Cancer Res Clin Oncol 130, 15–24.

    CAS  PubMed  Google Scholar 

  • Tong RT et al (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64, 3731–3736.

    CAS  PubMed  Google Scholar 

  • Tozer GM, Prise VE, Wilson J et al (1999) Combretastatin A-4 Phosphate as a tumor vascular- targeting agent: early effects in tumors and normal tissues. Cancer Res 59, 1626–1634.

    CAS  PubMed  Google Scholar 

  • Tozer GM, Ameer-Beg SM, Baker J et al (2005) Intravital imaging of tumor vascular networks using multi-photon fluorescence microscopy. Advanced Drug Delivery Reviews 57, 135–152.

    CAS  PubMed  Google Scholar 

  • Weidner N (1995) Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol 147, 9–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Welter M, Bartha K, Rieger H (2008) Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor. J Theor Biol 250, 257.

    CAS  PubMed  Google Scholar 

  • Wildiers H et al (2003) Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11. Br J Cancer 88, 1979–1986.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willett CG et al (2004) Direct evidence that the anti-VEGF antibody Bevacizumab has anti-vascular effects in human rectal cancer. Nat Med 10, 145–147.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willett CG et al (2005) Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for Bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol 23, 8136–8139.

    PubMed  Google Scholar 

  • Wise SM, Lowengrub JS, Frieboes HB, Cristini V (2008) Three-dimensional multispecies nonlinear tumor growth-I. Model and numerical method. J Theor Biol 253, 524–543.

    CAS  PubMed  Google Scholar 

  • Wu J, Xu SX, Long Q et al (2008a) Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature. J Biomech 41, 996–1004.

    PubMed  Google Scholar 

  • Wu J, Xu SX, Long Q et al (2008b) Simulation of 3D Solid Tumor Angiogenesis Including Arteriole, Capillary and Venule. Molecular & Cellular Biomech 5(4), 127–227.

    Google Scholar 

  • Wu J, Long Q, Xu SX, Padhani AR (2009a) Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature. J Biomech 42, 712–721.

    PubMed  Google Scholar 

  • Wu J (2009b) Numerical study of tumor hemodynamics for vascular-targeted therapy. Doctoral Thesis.

    Google Scholar 

  • Zhao GP, Gao H, Wu J et al (2006) 2D numerical simulation of effect anti-angiogenic factors Angiostatin and Endostatin on tumor-induced angiogenesis. J Med Biomech 21(4), 272279 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wu, J., Long, Q., Xu, Sx. (2012). Blood Perfusion in Solid Tumor with “Normalized” Microvasculature. In: Jackson, T.L. (eds) Modeling Tumor Vasculature. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0052-3_14

Download citation

Publish with us

Policies and ethics