Skip to main content

Murine Gammaherpesvirus-Associated Tumorigenesis

  • Chapter
  • First Online:
  • 1276 Accesses

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Murine gammaherpesvirus 68 (MHV68, also known as γHV68 and MHV4) infection of mice has been extensively exploited to characterize basic aspects of gammaherpesvirus pathogenesis. In this chapter, we primarily focus on studies pertaining to MHV68 infection and its association with the development of lymphoma. This includes discussion of previous and ongoing studies that reveal common strategies utilized by both murine and human gammaherpesviruses, in terms of conserved functionality of viral proteins as well as the innate and adaptive host immune responses. We address work examining the role of four major oncogenes conserved between the human, nonhuman primate, and murine γ2-herpesviruses (v-cyclin, v-bcl2, v-GPCR, LANA) in MHV68 infection and tumorigenesis. We also discuss MHV68 proteins with unique sequence yet distinct immunomodulatory functions bearing striking similarity to several human gammaherpesvirus proteins, as well as prooncogenic alterations in cell signaling in response to infection that have not yet been ascribed to a particular viral gene. In addition to this survey of potential viral oncogenes, we include a discussion of the host immune response to MHV68 infection and studies addressing its role in controlling lymphomagenesis. We highlight the strength of the MHV68 system, in particular its value in the study of gammaherpesvirus-associated tumorigenesis as a means to readily examine virus and host mutations in the context of a natural infection. We end with a partial inventory of key underlying issues regarding the relationship between lifelong gammaherpesvirus infection and oncogenic disease, and the potential of the MHV68 model to provide answers to these important questions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhikary D, Behrends U, Moosmann A, Witter K, Bornkamm GW, Mautner J (2006) Control of Epstein-Barr virus infection in vitro by T helper cells specific for virion glycoproteins. J Exp Med 203:995–1006

    PubMed  CAS  Google Scholar 

  • Allen RD 3rd, DeZalia MN, Speck SH (2007) Identification of an Rta responsive promoter involved in driving gammaHV68 v-cyclin expression during virus replication. Virology 365:250–259

    PubMed  CAS  Google Scholar 

  • Ansieau S, Morel AP, Hinkal G, Bastid J, Puisieux A (2010) TWISTing an embryonic transcription factor into an oncoprotein. Oncogene 29:3173–3184

    PubMed  CAS  Google Scholar 

  • Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC, Cesarman E (1997) Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385:347–350

    PubMed  CAS  Google Scholar 

  • Barton ES, Lutzke ML, Rochford R, Virgin HW (2005) Alpha/beta interferons regulate murine gammaherpesvirus latent gene expression and reactivation from latency. J Virol 79:14149–14160

    PubMed  CAS  Google Scholar 

  • Bellows DS, Chau BN, Lee P, Lazebnik Y, Burns WH, Hardwick JM (2000) Antiapoptotic herpesvirus Bcl-2 homologs escape caspase-mediated conversion to proapoptotic proteins. J Virol 74:5024–5031

    PubMed  CAS  Google Scholar 

  • Bhende PM, Dickerson SJ, Sun X, Feng WH, Kenney SC (2007) X-box-binding protein 1 activates lytic Epstein-Barr virus gene expression in combination with protein kinase D. J Virol 81:7363–7370

    PubMed  CAS  Google Scholar 

  • Bialik S, Kimchi A (2008) Autophagy and tumor suppression: recent advances in understanding the link between autophagic cell death pathways and tumor development. Adv Exp Med Biol 615:177–200

    PubMed  CAS  Google Scholar 

  • Blaskovic D, Stancekova M, Svobodova J, Mistrikova J (1980) Isolation of five strains of herpesviruses from two species of free living small rodents. Acta Virol 24:468

    PubMed  CAS  Google Scholar 

  • Boname JM, de Lima BD, Lehner PJ, Stevenson PG (2004) Viral degradation of the MHC class I peptide loading complex. Immunity 20:305–317

    PubMed  CAS  Google Scholar 

  • Boname JM, May JS, Stevenson PG (2005) The murine gamma-herpesvirus-68 MK3 protein causes TAP degradation independent of MHC class I heavy chain degradation. Eur J Immunol 35:171–179

    PubMed  CAS  Google Scholar 

  • Boname JM, Stevenson PG (2001) MHC class I ubiquitination by a viral PHD/LAP finger protein. Immunity 15:627–636

    PubMed  CAS  Google Scholar 

  • Borah S, Verma SC, Robertson ES (2004) ORF73 of herpesvirus saimiri, a viral homolog of Kaposi’s sarcoma-associated herpesvirus, modulates the two cellular tumor suppressor proteins p53 and pRb. J Virol 78:10336–10347

    PubMed  CAS  Google Scholar 

  • Brauninger A, Wacker HH, Rajewsky K, Kuppers R, Hansmann ML (2003) Typing the histogenetic origin of the tumor cells of lymphocyte-rich classical Hodgkin’s lymphoma in relation to tumor cells of classical and lymphocyte-predominance Hodgkin’s lymphoma. Cancer Res 63:1644–1651

    PubMed  Google Scholar 

  • Brooks JW, Hamilton-Easton AM, Christensen JP, Cardin RD, Hardy CL, Doherty PC (1999) Requirement for CD40 ligand, CD4(+) T cells, and B cells in an infectious mononucleosis-like syndrome. J Virol 73:9650–9654

    PubMed  CAS  Google Scholar 

  • Brown DM (2010) Cytolytic CD4 cells: direct mediators in infectious disease and malignancy. Cell Immunol 262:89–95

    PubMed  CAS  Google Scholar 

  • Brown HJ, Song MJ, Deng H, Wu TT, Cheng G, Sun R (2003) NF-kappaB inhibits gammaherpesvirus lytic replication. J Virol 77:8532–8540

    PubMed  CAS  Google Scholar 

  • Cai Q, Lan K, Verma SC, Si H, Lin D, Robertson ES (2006) Kaposi’s sarcoma-associated herpesvirus latent protein LANA interacts with HIF-1 alpha to upregulate RTA expression during hypoxia: Latency control under low oxygen conditions. J Virol 80:7965–7975

    PubMed  CAS  Google Scholar 

  • Card GL, Knowles P, Laman H, Jones N, McDonald NQ (2000) Crystal structure of a gamma-herpesvirus cyclin-cdk complex. EMBO J 19:2877–2888

    PubMed  CAS  Google Scholar 

  • Chang Y, Moore PS, Talbot SJ, Boshoff CH, Zarkowska T, Godden K, Paterson H, Weiss RA, Mittnacht S (1996) Cyclin encoded by KS herpesvirus. Nature 382:410

    PubMed  CAS  Google Scholar 

  • Clambey ET, Virgin HW, Speck SH (2002) Characterization of a spontaneous 9.5-kilobase-deletion mutant of murine gammaherpesvirus 68 reveals tissue-specific genetic requirements for latency. J Virol 76:6532–6544

    PubMed  CAS  Google Scholar 

  • Clambey ET, Virgin HW, Speck SH (2000) Disruption of the murine gammaherpesvirus 68 M1 open reading frame leads to enhanced reactivation from latency. J Virol 74:1973–1984

    PubMed  CAS  Google Scholar 

  • Coppola MA, Flano E, Nguyen P, Hardy CL, Cardin RD, Shastri N, Woodland DL, Blackman MA (1999) Apparent MHC-independent stimulation of CD8+ T cells in vivo during latent murine gammaherpesvirus infection. J Immunol 163:1481–1489

    PubMed  CAS  Google Scholar 

  • Courville P, Simon F, Le Pessot F, Tallet Y, Debab Y, Metayer J (2002) Detection of HHV8 latent nuclear antigen by immunohistochemistry. A new tool for differentiating Kaposi’s sarcoma from its mimics. Ann Pathol 22:267–276

    PubMed  Google Scholar 

  • de Lima BD, May JS, Marques S, Simas JP, Stevenson PG (2005) Murine gammaherpesvirus 68 bcl-2 homologue contributes to latency establishment in vivo. J Gen Virol 86:31–40

    PubMed  Google Scholar 

  • Du MQ, Bacon CM, Isaacson PG (2007) Kaposi sarcoma-associated herpesvirus/human herpesvirus 8 and lymphoproliferative disorders. J Clin Pathol 60:1350–1357

    PubMed  Google Scholar 

  • Du MQ, Liu H, Diss TC, Ye H, Hamoudi RA, Dupin N, Meignin V, Oksenhendler E, Boshoff C, Isaacson PG (2001) Kaposi sarcoma-associated herpesvirus infects monotypic (IgM lambda) but polyclonal naive B cells in Castleman disease and associated lymphoproliferative disorders. Blood 97:2130–2136

    PubMed  CAS  Google Scholar 

  • Dupin N, Diss TL, Kellam P, Tulliez M, Du MQ, Sicard D, Weiss RA, Isaacson PG, Boshoff C (2000) HHV-8 is associated with a plasmablastic variant of Castleman disease that is linked to HHV-8-positive plasmablastic lymphoma. Blood 95:1406–1412

    PubMed  CAS  Google Scholar 

  • Xiaofei E, Hwang S, Oh S, Lee JS, Jeong JH, Gwack Y, Kowalik TF, Sun R, Jung JU, Liang C (2009) Viral Bcl-2-mediated evasion of autophagy aids chronic infection of gammaherpesvirus 68. PLoS Pathog 5:e1000609

    Google Scholar 

  • Ebrahimi B, Dutia BM, Brownstein DG, Nash AA (2001) Murine gammaherpesvirus-68 infection causes multi-organ fibrosis and alters leukocyte trafficking in interferon-gamma receptor knockout mice. Am J Pathol 158:2117–2125

    PubMed  CAS  Google Scholar 

  • Ehtisham S, Sunil-Chandra NP, Nash AA (1993) Pathogenesis of murine gammaherpesvirus infection in mice deficient in CD4 and CD8 T cells. J Virol 67:5247–5252

    PubMed  CAS  Google Scholar 

  • Evans AG, Moser JM, Krug LT, Pozharskaya V, Mora AL, Speck SH (2008) A gammaherpesvirus-secreted activator of Vbeta4+ CD8+ T cells regulates chronic infection and immunopathology. J Exp Med 205:669–684

    PubMed  CAS  Google Scholar 

  • Fakhari FD, Jeong JH, Kanan Y, Dittmer DP (2006) The latency-associated nuclear antigen of Kaposi sarcoma-associated herpesvirus induces B cell hyperplasia and lymphoma. J Clin Invest 116:735–742

    PubMed  CAS  Google Scholar 

  • Flano E, Hardy CL, Kim IJ, Frankling C, Coppola MA, Nguyen P, Woodland DL, Blackman MA (2004) T cell reactivity during infectious mononucleosis and persistent gammaherpesvirus infection in mice. J Immunol 172:3078–3085

    PubMed  CAS  Google Scholar 

  • Flano E, Husain SM, Sample JT, Woodland DL, Blackman MA (2000) Latent murine gamma-herpesvirus infection is established in activated B cells, dendritic cells, and macrophages. J Immunol 165:1074–1081

    PubMed  CAS  Google Scholar 

  • Forrest JC, Paden CR, Allen RD 3rd, Collins J, Speck SH (2007) ORF73-null murine gammaherpesvirus 68 reveals roles for mLANA and p53 in virus replication. J Virol 81:11957–11971

    PubMed  CAS  Google Scholar 

  • Forrest JC, Speck SH (2008) Establishment of B-cell lines latently infected with reactivation-competent murine gammaherpesvirus 68 provides evidence for viral alteration of a DNA damage-signaling cascade. J Virol 82:7688–7699

    PubMed  CAS  Google Scholar 

  • Freeman ML, Lanzer KG, Cookenham T, Peters B, Sidney J, Wu TT, Sun R, Woodland DL, Sette A, Blackman MA (2010) Two kinetic patterns of epitope-specific CD8 T-cell responses following murine gammaherpesvirus 68 infection. J Virol 84:2881–2892

    PubMed  CAS  Google Scholar 

  • Friborg J Jr, Kong W, Hottiger MO, Nabel GJ (1999) p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402:889–894

    PubMed  CAS  Google Scholar 

  • Fruehling S, Lee SK, Herrold R, Frech B, Laux G, Kremmer E, Grasser FA, Longnecker R (1996) Identification of latent membrane protein 2A (LMP2A) domains essential for the LMP2A dominant-negative effect on B-lymphocyte surface immunoglobulin signal transduction. J Virol 70:6216–6226

    PubMed  CAS  Google Scholar 

  • Fruehling S, Longnecker R (1997) The immunoreceptor tyrosine-based activation motif of Epstein-Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology 235:241–251

    PubMed  CAS  Google Scholar 

  • Gangappa S, Kapadia SB, Speck SH, Virgin HW (2002a) Antibody to a lytic cycle viral protein decreases gammaherpesvirus latency in B-cell-deficient mice. J Virol 76:11460–11468

    PubMed  CAS  Google Scholar 

  • Gangappa S, van Dyk LF, Jewett TJ, Speck SH, Virgin HW (2002b) Identification of the in vivo role of a viral bcl-2. J Exp Med 195:931–940

    PubMed  CAS  Google Scholar 

  • Gargano LM, Moser JM, Speck SH (2008) Role for MyD88 signaling in murine gammaherpesvirus 68 latency. J Virol 82:3853–3863

    PubMed  CAS  Google Scholar 

  • Gong D, Qi J, Arumugaswami V, Sun R, Deng H (2009) Identification and functional characterization of the left origin of lytic replication of murine gammaherpesvirus 68. Virology 387:285–295

    PubMed  CAS  Google Scholar 

  • Goodwin MM, Canny S, Steed A, Virgin HW (2010) Murine gammaherpesvirus 68 has evolved gamma interferon and stat1-repressible promoters for the lytic switch gene 50. J Virol 84:3711–3717

    PubMed  CAS  Google Scholar 

  • Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906

    PubMed  CAS  Google Scholar 

  • Gray KS, Allen RD 3rd, Farrell ML, Forrest JC, Speck SH (2009) Alternatively initiated gene 50/RTA transcripts expressed during murine and human gammaherpesvirus reactivation from latency. J Virol 83:314–328

    PubMed  CAS  Google Scholar 

  • Heller KN, Gurer C, Munz C (2006) Virus-specific CD4+ T cells: ready for direct attack. J Exp Med 203:805–808

    PubMed  CAS  Google Scholar 

  • Herskowitz J, Jacoby MA, Speck SH (2005) The murine gammaherpesvirus 68 M2 gene is required for efficient reactivation from latently infected B cells. J Virol 79:2261–2273

    PubMed  CAS  Google Scholar 

  • Herskowitz JH, Siegel AM, Jacoby MA, Speck SH (2008) Systematic mutagenesis of the murine gammaherpesvirus 68 M2 protein identifies domains important for chronic infection. J Virol 82:3295–3310

    PubMed  CAS  Google Scholar 

  • Hoegh-Petersen M, Thomsen AR, Christensen JP, Holst PJ (2009) Mucosal immunization with recombinant adenoviral vectors expressing murine gammaherpesvirus-68 genes M2 and M3 can reduce latent viral load. Vaccine 27:6723–6730

    PubMed  CAS  Google Scholar 

  • Hoge AT, Hendrickson SB, Burns WH (2000) Murine gammaherpesvirus 68 cyclin D homologue is required for efficient reactivation from latency. J Virol 74:7016–7023

    PubMed  CAS  Google Scholar 

  • Hrabovska Z, Chalupkova A, Mistrikova J (2010) Tumors induced by murine herpesvirus 60 or by cell line NB-78 derived from a tumor induced by Murine herpesvirus 78 show presence of the inducing viruses. Acta Virol 54:55–60

    PubMed  CAS  Google Scholar 

  • Husain SM, Usherwood EJ, Dyson H, Coleclough C, Coppola MA, Woodland DL, Blackman MA, Stewart JP, Sample JT (1999) Murine gammaherpesvirus M2 gene is latency-associated and its protein a target for CD8(+) T lymphocytes. Proc Natl Acad Sci USA 96:7508–7513

    PubMed  CAS  Google Scholar 

  • Ishido S, Wang C, Lee BS, Cohen GB, Jung JU (2000) Downregulation of major histocompatibility complex class I molecules by Kaposi’s sarcoma-associated herpesvirus K3 and K5 proteins. J Virol 74:5300–5309

    PubMed  CAS  Google Scholar 

  • Jacoby MA, Virgin HW, Speck SH (2002) Disruption of the M2 gene of murine gammaherpesvirus 68 alters splenic latency following intranasal, but not intraperitoneal, inoculation. J Virol 76:1790–1801

    PubMed  CAS  Google Scholar 

  • Jenner RG, Maillard K, Cattini N, Weiss RA, Boshoff C, Wooster R, Kellam P (2003) Kaposi’s sarcoma-associated herpesvirus-infected primary effusion lymphoma has a plasma cell gene expression profile. Proc Natl Acad Sci USA 100:10399–10404

    PubMed  CAS  Google Scholar 

  • Kanzler H, Kuppers R, Hansmann ML, Rajewsky K (1996) Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med 184:1495–1505

    PubMed  CAS  Google Scholar 

  • Khan G (2006) Epstein-Barr virus, cytokines, and inflammation: a cocktail for the pathogenesis of Hodgkin’s lymphoma? Exp Hematol 34:399–406

    PubMed  CAS  Google Scholar 

  • Khanna R, Burrows SR, Kurilla MG, Jacob CA, Misko IS, Sculley TB, Kieff E, Moss DJ (1992) Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development. J Exp Med 176:169–176

    PubMed  CAS  Google Scholar 

  • Kim IJ, Flano E, Woodland DL, Lund FE, Randall TD, Blackman MA (2003) Maintenance of long term gamma-herpesvirus B cell latency is dependent on CD40-mediated development of memory B cells. J Immunol 171:886–892

    PubMed  CAS  Google Scholar 

  • Krug LT, Collins CM, Gargano LM, Speck SH (2009) NF-kappaB p50 plays distinct roles in the establishment and control of murine gammaherpesvirus 68 latency. J Virol 83:4732–4748

    PubMed  CAS  Google Scholar 

  • Krug LT, Moser JM, Dickerson SM, Speck SH (2007) Inhibition of NF-kappaB activation in vivo impairs establishment of gammaherpesvirus latency. PLoS Pathog 3:e11

    PubMed  Google Scholar 

  • Ku B, Woo JS, Liang C, Lee KH, Hong HS, E X, Kim KS, Jung JU, Oh BH (2008) Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine gamma-herpesvirus 68. PLoS Pathog 4:e25

    PubMed  Google Scholar 

  • Kuppers R (2009) The biology of Hodgkin’s lymphoma. Nat Rev Cancer 9:15–27

    PubMed  Google Scholar 

  • Kuppers R (1999) Identifying the precursors of Hodgkin and Reed-Sternberg cells in Hodgkin’s disease: role of the germinal center in B-cell lymphomagenesis. J Acquir Immune Defic Syndr 21(Suppl 1):S74–S79

    PubMed  CAS  Google Scholar 

  • Laichalk LL, Thorley-Lawson DA (2005) Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol 79:1296–1307

    PubMed  CAS  Google Scholar 

  • Lee BJ, Koszinowski UH, Sarawar SR, Adler H (2003) A gammaherpesvirus G protein-coupled receptor homologue is required for increased viral replication in response to chemokines and efficient reactivation from latency. J Immunol 170:243–251

    PubMed  CAS  Google Scholar 

  • Lee BJ, Reiter SK, Anderson M, Sarawar SR (2002) CD28(−/−) mice show defects in cellular and humoral immunity but are able to control infection with murine gammaherpesvirus 68. J Virol 76:3049–3053

    PubMed  CAS  Google Scholar 

  • Lee KS, Groshong SD, Cool CD, Kleinschmidt-DeMasters BK, van Dyk LF (2009) Murine gammaherpesvirus 68 infection of IFNgamma unresponsive mice: a small animal model for gammaherpesvirus-associated B-cell lymphoproliferative disease. Cancer Res 69:5481–5489

    PubMed  CAS  Google Scholar 

  • Liang X, Collins CM, Mendel JB, Iwakoshi NN, Speck SH (2009) Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes. PLoS Pathog 5:e1000677

    PubMed  Google Scholar 

  • Liang X, Pickering MT, Cho NH, Chang H, Volkert MR, Kowalik TF, Jung JU (2006) Deregulation of DNA damage signal transduction by herpesvirus latency-associated M2. J Virol 80:5862–5874

    PubMed  CAS  Google Scholar 

  • Liu J, Martin H, Shamay M, Woodard C, Tang QQ, Hayward SD (2007) Kaposi’s sarcoma-associated herpesvirus LANA protein downregulates nuclear glycogen synthase kinase 3 activity and consequently blocks differentiation. J Virol 81:4722–4731

    PubMed  CAS  Google Scholar 

  • Lybarger L, Wang X, Harris MR, Virgin HW, Hansen TH (2003) Virus subversion of the MHC class I peptide-loading complex. Immunity 18:121–130

    PubMed  CAS  Google Scholar 

  • Lyon AB, Sarawar SR (2006) Differential requirement for CD28 and CD80/86 pathways of costimulation in the long-term control of murine gammaherpesvirus-68. Virology 356:50–56

    PubMed  CAS  Google Scholar 

  • Madureira PA, Matos P, Soeiro I, Dixon LK, Simas JP, Lam EW (2005) Murine gamma-herpesvirus 68 latency protein M2 binds to Vav signaling proteins and inhibits B-cell receptor-induced cell cycle arrest and apoptosis in WEHI-231 B cells. J Biol Chem 280:37310–37318

    PubMed  CAS  Google Scholar 

  • Marques S, Efstathiou S, Smith KG, Haury M, Simas JP (2003) Selective gene expression of latent murine gammaherpesvirus 68 in B lymphocytes. J Virol 77:7308–7318

    PubMed  CAS  Google Scholar 

  • Martinez-Guzman D, Rickabaugh T, Wu TT, Brown H, Cole S, Song MJ, Tong L, Sun R (2003) Transcription program of murine gammaherpesvirus 68. J Virol 77:10488–10503

    PubMed  CAS  Google Scholar 

  • Means RE, Choi JK, Nakamura H, Chung YH, Ishido S, Jung JU (2002) Immune evasion strategies of Kaposi’s sarcoma-associated herpesvirus. Curr Top Microbiol Immunol 269:187–201

    PubMed  CAS  Google Scholar 

  • Miller CL, Burkhardt AL, Lee JH, Stealey B, Longnecker R, Bolen JB, Kieff E (1995) Integral membrane protein 2 of Epstein-Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity 2:155–166

    PubMed  CAS  Google Scholar 

  • Miller CL, Lee JH, Kieff E, Burkhardt AL, Bolen JB, Longnecker R (1994) Epstein-Barr virus protein LMP2A regulates reactivation from latency by negatively regulating tyrosine kinases involved in sIg-mediated signal transduction. Infect Agents Dis 3:128–136

    PubMed  CAS  Google Scholar 

  • Mistrikova J, Mrmusova-Supolikova M, Rajcani J (2004) Leukemia-like syndrome in Balb/c mice infected with the lymphotropic gamma herpesvirus MHV-Sumava: an analogy to EBV infection. Neoplasma 51:71–76

    PubMed  CAS  Google Scholar 

  • Mittnacht S, Boshoff C (2000) Viral cyclins. Rev Med Virol 10:175–184

    PubMed  CAS  Google Scholar 

  • Moorman NJ, Virgin HW, Speck SH (2003a) Disruption of the gene encoding the gammaHV68 v-GPCR leads to decreased efficiency of reactivation from latency. Virology 307:179–190

    PubMed  CAS  Google Scholar 

  • Moorman NJ, Willer DO, Speck SH (2003b) The gammaherpesvirus 68 latency-associated nuclear antigen homolog is critical for the establishment of splenic latency. J Virol 77:10295–10303

    PubMed  CAS  Google Scholar 

  • Moser JM, Upton JW, Gray KS, Speck SH (2005) Ex vivo stimulation of B cells latently infected with gammaherpesvirus 68 triggers reactivation from latency. J Virol 79:5227–5231

    PubMed  CAS  Google Scholar 

  • Mrmusova M, Horvathova M, Klobusicka M, Mistrikova J (2002) Immunophenotyping of leukocytes in peripheral blood of BALB/c mice infected with mouse herpesvirus isolate 72. Acta Virol 46:19–24

    PubMed  CAS  Google Scholar 

  • Murray RJ, Kurilla MG, Brooks JM, Thomas WA, Rowe M, Kieff E, Rickinson AB (1992) Identification of target antigens for the human cytotoxic T cell response to Epstein-Barr virus (EBV): implications for the immune control of EBV-positive malignancies. J Exp Med 176:157–168

    PubMed  CAS  Google Scholar 

  • Nicholas J (2005) Human gammaherpesvirus cytokines and chemokine receptors. J Interferon Cytokine Res 25:373–383

    PubMed  CAS  Google Scholar 

  • Nicholas J, Cameron KR, Honess RW (1992) Herpesvirus saimiri encodes homologues of G protein-coupled receptors and cyclins. Nature 355:362–365

    PubMed  CAS  Google Scholar 

  • Paden CR, Forrest JC, Moorman NJ, Speck SH (2010) MHV68 LANA is essential for virus reactivation from splenocytes, but not long term carriage of viral genome. J Virol 84:7214–7224

    Google Scholar 

  • Palmero I, Holder A, Sinclair AJ, Dickson C, Peters G (1993) Cyclins D1 and D2 are differentially expressed in human B-lymphoid cell lines. Oncogene 8:1049–1054

    PubMed  CAS  Google Scholar 

  • Pappova M, Stancekova M, Spissakova I, Durmanova V, Mistrikova J (2004) Pathogenetical characterization of isolate MHV-60 of mouse herpesvirus strain 68. Acta Virol 48:91–96

    PubMed  CAS  Google Scholar 

  • Peng L, Wu TT, Tchieu JH, Feng J, Brown HJ, Feng J, Li X, Qi J, Deng H, Vivanco I, Mellinghoff IK, Jamieson C, Sun R (2010) Inhibition of the phosphatidylinositol 3-kinase-Akt pathway enhances gamma-2 herpesvirus lytic replication and facilitates reactivation from latency. J Gen Virol 91:463–469

    PubMed  CAS  Google Scholar 

  • Pires de Miranda M, Alenquer M, Marques S, Rodrigues L, Lopes F, Bustelo XR, Simas JP (2008) The Gammaherpesvirus m2 protein manipulates the Fyn/Vav pathway through a multidocking mechanism of assembly. PLoS One 3:e1654

    PubMed  Google Scholar 

  • Pozharskaya V, Torres-Gonzalez E, Rojas M, Gal A, Amin M, Dollard S, Roman J, Stecenko AA, Mora AL (2009) Twist: a regulator of epithelial-mesenchymal transition in lung fibrosis. PLoS One 4:e7559

    PubMed  Google Scholar 

  • Rastelli J, Homig-Holzel C, Seagal J, Muller W, Hermann AC, Rajewsky K, Zimber-Strobl U (2008) LMP1 signaling can replace CD40 signaling in B cells in vivo and has unique features of inducing class-switch recombination to IgG1. Blood 111:1448–1455

    PubMed  CAS  Google Scholar 

  • Robertson KA, Usherwood EJ, Nash AA (2001) Regression of a murine gammaherpesvirus 68-positive b-cell lymphoma mediated by CD4 T lymphocytes. J Virol 75:3480–3482

    PubMed  CAS  Google Scholar 

  • Rodrigues L, Pires de Miranda M, Caloca MJ, Bustelo XR, Simas JP (2006) Activation of Vav by the gammaherpesvirus M2 protein contributes to the establishment of viral latency in B lymphocytes. J Virol 80:6123–6135

    PubMed  CAS  Google Scholar 

  • Roy DJ, Ebrahimi BC, Dutia BM, Nash AA, Stewart JP (2000) Murine gammaherpesvirus M11 gene product inhibits apoptosis and is expressed during virus persistence. Arch Virol 145:2411–2420

    PubMed  CAS  Google Scholar 

  • Schwering I, Brauninger A, Klein U, Jungnickel B, Tinguely M, Diehl V, Hansmann ML, Dalla-Favera R, Rajewsky K, Kuppers R (2003) Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 101:1505–1512

    PubMed  CAS  Google Scholar 

  • Sgarbanti M, Arguello M, tenOever BR, Battistini A, Lin R, Hiscott J (2004) A requirement for NF-kappaB induction in the production of replication-competent HHV-8 virions. Oncogene 23:5770–5780

    PubMed  CAS  Google Scholar 

  • Shamay M, Krithivas A, Zhang J, Hayward SD (2006) Recruitment of the de novo DNA methyltransferase Dnmt3a by Kaposi’s sarcoma-associated herpesvirus LANA. Proc Natl Acad Sci USA 103:14554–14559

    PubMed  CAS  Google Scholar 

  • Si MW, Jagirdar J, Zhang YJ, Gao SJ, Yeh IT (2005) Detection of KSHV in transbronchial biopsies in patients with Kaposi sarcoma. Appl Immunohistochem Mol Morphol 13:61–65

    PubMed  Google Scholar 

  • Siegel AM, Herskowitz JH, Speck SH (2008) The MHV68 M2 protein drives IL-10 dependent B cell proliferation and differentiation. PLoS Pathog 4:e1000039

    PubMed  Google Scholar 

  • Sinclair AJ, Palmero I, Holder A, Peters G, Farrell PJ (1995) Expression of cyclin D2 in Epstein-Barr virus-positive Burkitt’s lymphoma cell lines is related to methylation status of the gene. J Virol 69:1292–1295

    PubMed  CAS  Google Scholar 

  • Sinha S, Colbert CL, Becker N, Wei Y, Levine B (2008) Molecular basis of the regulation of Beclin 1-dependent autophagy by the gamma-herpesvirus 68 Bcl-2 homolog M11. Autophagy 4:989–997

    PubMed  CAS  Google Scholar 

  • Sodhi A, Montaner S, Patel V, Zohar M, Bais C, Mesri EA, Gutkind JS (2000) The Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res 60:4873–4880

    PubMed  CAS  Google Scholar 

  • Song MJ, Hwang S, Wong WH, Wu TT, Lee S, Liao HI, Sun R (2005) Identification of viral genes essential for replication of murine gamma-herpesvirus 68 using signature-tagged mutagenesis. Proc Natl Acad Sci USA 102:3805–3810

    PubMed  CAS  Google Scholar 

  • Steed A, Buch T, Waisman A, Virgin HW (2007) Gamma interferon blocks gammaherpesvirus reactivation from latency in a cell type-specific manner. J Virol 81:6134–6140

    PubMed  CAS  Google Scholar 

  • Steed AL, Barton ES, Tibbetts SA, Popkin DL, Lutzke ML, Rochford R, Virgin HW (2006) Gamma interferon blocks gammaherpesvirus reactivation from latency. J Virol 80:192–200

    PubMed  CAS  Google Scholar 

  • Stevenson PG, Belz GT, Altman JD, Doherty PC (1999a) Changing patterns of dominance in the CD8+ T cell response during acute and persistent murine gamma-herpesvirus infection. Eur J Immunol 29:1059–1067

    PubMed  CAS  Google Scholar 

  • Stevenson PG, Cardin RD, Christensen JP, Doherty PC (1999b) Immunological control of a murine gammaherpesvirus independent of CD8+ T cells. J Gen Virol 80(Pt 2):477–483

    PubMed  CAS  Google Scholar 

  • Stevenson PG, Doherty PC (1998) Kinetic analysis of the specific host response to a murine gammaherpesvirus. J Virol 72:943–949

    PubMed  CAS  Google Scholar 

  • Stevenson PG, Doherty PC (1999) Non-antigen-specific B-cell activation following murine gammaherpesvirus infection is CD4 independent in vitro but CD4 dependent in vivo. J Virol 73:1075–1079

    PubMed  CAS  Google Scholar 

  • Stevenson PG, May JS, Smith XG, Marques S, Adler H, Koszinowski UH, Simas JP, Efstathiou S (2002) K3-mediated evasion of CD8(+) T cells aids amplification of a latent gamma-herpesvirus. Nat Immunol 3:733–740

    PubMed  CAS  Google Scholar 

  • Stewart JP, Micali N, Usherwood EJ, Bonina L, Nash AA (1999) Murine gamma-herpesvirus 68 glycoprotein 150 protects against virus-induced mononucleosis: a model system for gamma-herpesvirus vaccination. Vaccine 17:152–157

    PubMed  CAS  Google Scholar 

  • Stuller KA, Flano E (2009) CD4 T cells mediate killing during persistent gammaherpesvirus 68 infection. J Virol 83:4700–4703

    PubMed  CAS  Google Scholar 

  • Suarez AL, van Dyk LF (2008) Endothelial cells support persistent gammaherpesvirus 68 infection. PLoS Pathog 4:e1000152

    PubMed  Google Scholar 

  • Sunil-Chandra NP, Arno J, Fazakerley J, Nash AA (1994) Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. Am J Pathol 145:818–826

    PubMed  CAS  Google Scholar 

  • Tarakanova VL, Kreisel F, White DW, Virgin HW (2008) Murine gammaherpesvirus 68 genes both induce and suppress lymphoproliferative disease. J Virol 82:1034–1039

    PubMed  CAS  Google Scholar 

  • Tarakanova VL, Leung-Pineda V, Hwang S, Yang CW, Matatall K, Basson M, Sun R, Piwnica-Worms H, Sleckman BP, Virgin HW (2007) Gamma-herpesvirus kinase actively initiates a DNA damage response by inducing phosphorylation of H2AX to foster viral replication. Cell Host Microbe 1:275–286

    PubMed  CAS  Google Scholar 

  • Tarakanova VL, Suarez F, Tibbetts SA, Jacoby MA, Weck KE, Hess JL, Speck SH, Virgin HW (2005) Murine gammaherpesvirus 68 infection is associated with lymphoproliferative disease and lymphoma in BALB beta2 microglobulin-deficient mice. J Virol 79:14668–14679

    PubMed  CAS  Google Scholar 

  • Thomson RC, Petrik J, Nash AA, Dutia BM (2008) Expansion and activation of NK cell populations in a gammaherpesvirus infection. Scand J Immunol 67:489–495

    PubMed  CAS  Google Scholar 

  • Thornburg NJ, Kulwichit W, Edwards RH, Shair KH, Bendt KM, Raab-Traub N (2006) LMP1 signaling and activation of NF-kappaB in LMP1 transgenic mice. Oncogene 25:288–297

    PubMed  CAS  Google Scholar 

  • Tibbetts SA, van Dyk LF, Speck SH, Virgin HW (2002) Immune control of the number and reactivation phenotype of cells latently infected with a gammaherpesvirus. J Virol 76:7125–7132

    PubMed  CAS  Google Scholar 

  • Topham DJ, Cardin RC, Christensen JP, Brooks JW, Belz GT, Doherty PC (2001) Perforin and Fas in murine gammaherpesvirus-specific CD8(+) T cell control and morbidity. J Gen Virol 82:1971–1981

    PubMed  CAS  Google Scholar 

  • Tripp RA, Hamilton-Easton AM, Cardin RD, Nguyen P, Behm FG, Woodland DL, Doherty PC, Blackman MA (1997) Pathogenesis of an infectious mononucleosis-like disease induced by a murine gamma-herpesvirus: role for a viral superantigen? J Exp Med 185:1641–1650

    PubMed  CAS  Google Scholar 

  • Tschopp J, Thome M, Hofmann K, Meinl E (1998) The fight of viruses against apoptosis. Curr Opin Genet Dev 8:82–87

    PubMed  CAS  Google Scholar 

  • Uchida J, Yasui T, Takaoka-Shichijo Y, Muraoka M, Kulwichit W, Raab-Traub N, Kikutani H (1999) Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science 286:300–303

    PubMed  CAS  Google Scholar 

  • Upton JW, Speck SH (2006) Evidence for CDK-dependent and CDK-independent functions of the murine gammaherpesvirus 68 v-cyclin. J Virol 80:11946–11959

    PubMed  CAS  Google Scholar 

  • Upton JW, van Dyk LF, Speck SH (2005) Characterization of murine gammaherpesvirus 68 v-cyclin interactions with cellular cdks. Virology 341:271–283

    PubMed  CAS  Google Scholar 

  • Usherwood EJ, Meadows SK, Crist SG, Bellfy SC, Sentman CL (2005) Control of murine gammaherpesvirus infection is independent of NK cells. Eur J Immunol 35:2956–2961

    PubMed  CAS  Google Scholar 

  • Usherwood EJ, Ross AJ, Allen DJ, Nash AA (1996a) Murine gammaherpesvirus-induced splenomegaly: a critical role for CD4 T cells. J Gen Virol 77(Pt 4):627–630

    PubMed  CAS  Google Scholar 

  • Usherwood EJ, Roy DJ, Ward K, Surman SL, Dutia BM, Blackman MA, Stewart JP, Woodland DL (2000) Control of gammaherpesvirus latency by latent antigen-specific CD8(+) T cells. J Exp Med 192:943–952

    PubMed  CAS  Google Scholar 

  • Usherwood EJ, Stewart JP, Nash AA (1996b) Characterization of tumor cell lines derived from murine gammaherpesvirus-68-infected mice. J Virol 70:6516–6518

    PubMed  CAS  Google Scholar 

  • Usherwood EJ, Ward KA, Blackman MA, Stewart JP, Woodland DL (2001) Latent antigen vaccination in a model gammaherpesvirus infection. J Virol 75:8283–8288

    PubMed  CAS  Google Scholar 

  • van Dyk LF, Hess JL, Katz JD, Jacoby M, Speck SH, Virgin HI (1999) The murine gammaherpesvirus 68 v-cyclin gene is an oncogene that promotes cell cycle progression in primary lymphocytes. J Virol 73:5110–5122

    PubMed  Google Scholar 

  • van Dyk LF, Virgin HW, Speck SH (2003) Maintenance of gammaherpesvirus latency requires viral cyclin in the absence of B lymphocytes. J Virol 77:5118–5126

    PubMed  Google Scholar 

  • van Dyk LF, Virgin HW, Speck SH (2000) The murine gammaherpesvirus 68 v-cyclin is a critical regulator of reactivation from latency. J Virol 74:7451–7461

    PubMed  Google Scholar 

  • Verma SC, Lan K, Robertson E (2007) Structure and function of latency-associated nuclear antigen. Curr Top Microbiol Immunol 312:101–136

    PubMed  CAS  Google Scholar 

  • Verzijl D, Fitzsimons CP, Van Dijk M, Stewart JP, Timmerman H, Smit MJ, Leurs R (2004) Differential activation of murine herpesvirus 68- and Kaposi’s sarcoma-associated herpesvirus-encoded ORF74 G protein-coupled receptors by human and murine chemokines. J Virol 78:3343–3351

    PubMed  CAS  Google Scholar 

  • Virgin HW, Latreille P, Wamsley P, Hallsworth K, Weck KE, Dal Canto AJ, Speck SH (1997) Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71:5894–5904

    PubMed  CAS  Google Scholar 

  • Virgin HW, Presti RM, Li XY, Liu C, Speck SH (1999) Three distinct regions of the murine gammaherpesvirus 68 genome are transcriptionally active in latently infected mice. J Virol 73:2321–2332

    PubMed  CAS  Google Scholar 

  • Vockerodt M, Morgan SL, Kuo M, Wei W, Chukwuma MB, Arrand JR, Kube D, Gordon J, Young LS, Woodman CB, Murray PG (2008) The Epstein-Barr virus oncoprotein, latent membrane protein-1, reprograms germinal centre B cells towards a Hodgkin’s Reed-Sternberg-like phenotype. J Pathol 216:83–92

    PubMed  CAS  Google Scholar 

  • Wakeling MN, Roy DJ, Nash AA, Stewart JP (2001) Characterization of the murine gammaherpesvirus 68 ORF74 product: a novel oncogenic G protein-coupled receptor. J Gen Virol 82:1187–1197

    PubMed  CAS  Google Scholar 

  • Wang GH, Garvey TL, Cohen JI (1999) The murine gammaherpesvirus-68 M11 protein inhibits Fas- and TNF-induced apoptosis. J Gen Virol 80(Pt 10):2737–2740

    PubMed  CAS  Google Scholar 

  • Weck KE, Barkon ML, Yoo LI, Speck SH, Virgin HI (1996) Mature B cells are required for acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68. J Virol 70:6775–6780

    PubMed  CAS  Google Scholar 

  • Weck KE, Dal Canto AJ, Gould JD, O’Guin AK, Roth KA, Saffitz JE, Speck SH, Virgin HW (1997) Murine gamma-herpesvirus 68 causes severe large-vessel arteritis in mice lacking interferon-gamma responsiveness: a new model for virus-induced vascular disease. Nat Med 3:1346–1353

    PubMed  CAS  Google Scholar 

  • Weck KE, Kim SS, Virgin HI, Speck SH (1999a) B cells regulate murine gammaherpesvirus 68 latency. J Virol 73:4651–4661

    PubMed  CAS  Google Scholar 

  • Weck KE, Kim SS, Virgin HI, Speck SH (1999b) Macrophages are the major reservoir of latent murine gammaherpesvirus 68 in peritoneal cells. J Virol 73:3273–3283

    PubMed  CAS  Google Scholar 

  • White DW, Keppel CR, Schneider SE, Reese TA, Coder J, Payton JE, Ley TJ, Virgin HW, Fehniger TA (2010) Latent herpesvirus infection arms NK cells. Blood 115:4377–4383

    PubMed  CAS  Google Scholar 

  • Willer DO, Speck SH (2005) Establishment and maintenance of long-term murine gammaherpesvirus 68 latency in B cells in the absence of CD40. J Virol 79:2891–2899

    PubMed  CAS  Google Scholar 

  • Willer DO, Speck SH (2003) Long-term latent murine Gammaherpesvirus 68 infection is preferentially found within the surface immunoglobulin D-negative subset of splenic B cells in vivo. J Virol 77:8310–8321

    PubMed  CAS  Google Scholar 

  • Wu L, Huang TG, Meseck M, Altomonte J, Ebert O, Shinozaki K, Garcia-Sastre A, Fallon J, Mandeli J, Woo SL (2008) rVSV(M Delta 51)-M3 is an effective and safe oncolytic virus for cancer therapy. Hum Gene Ther 19:635–647

    PubMed  CAS  Google Scholar 

  • Wu TT, Usherwood EJ, Stewart JP, Nash AA, Sun R (2000) Rta of murine gammaherpesvirus 68 reactivates the complete lytic cycle from latency. J Virol 74:3659–3667

    PubMed  CAS  Google Scholar 

  • Yager EJ, Kim IJ, Freeman ML, Lanzer KG, Burkum CE, Cookenham T, Woodland DL, Blackman MA (2010) Differential impact of ageing on cellular and humoral immunity to a persistent murine gamma-herpesvirus. Immun Ageing 7:3

    PubMed  Google Scholar 

  • Yang TY, Chen SC, Leach MW, Manfra D, Homey B, Wiekowski M, Sullivan L, Jenh CH, Narula SK, Chensue SW, Lira SA (2000) Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi’s sarcoma. J Exp Med 191:445–454

    PubMed  CAS  Google Scholar 

  • Yao Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR, Cohen JI, Spriggs MK (1995) Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3:811–821

    PubMed  CAS  Google Scholar 

  • Yu F, Feng J, Harada JN, Chanda SK, Kenney SC, Sun R (2007) B cell terminal differentiation factor XBP-1 induces reactivation of Kaposi’s sarcoma-associated herpesvirus. FEBS Lett 581:3485–3488

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel H. Speck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gray, K.S., Speck, S.H. (2012). Murine Gammaherpesvirus-Associated Tumorigenesis. In: Robertson, E. (eds) Cancer Associated Viruses. Current Cancer Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0016-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0016-5_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9999-3

  • Online ISBN: 978-1-4614-0016-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics