Skip to main content

Blastocyst Development and Growth: Role of Inositol and Citrate

  • Conference paper
Preimplantation Embryo Development

Part of the book series: Serono Symposia, USA Norwell, Massachusetts ((SERONOSYMP))

Abstract

Information on the control of development and growth in the pre-implantation mammalian embryo is of major interest both because of its intrinsic biological importance and its relevance to human and animal fertility. Yet in spite of this situation, information about even such a basic area as preimplantation embryo growth patterns is confined to a very limited number of species, and there appears to be little information for any species on the mechanisms controlling growth in preimplantation embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brinster RL. Protein content of the mouse embryo during the first five days of development. J Reprod Fertil 1967;13:413–20.

    Article  PubMed  CAS  Google Scholar 

  2. Schiffner J, Spielmann H. Fluorometric assay of the protein content of mouse and rat embryos during preimplantation development. J Reprod Fertil 1976; 47:145–7.

    Article  PubMed  CAS  Google Scholar 

  3. Daniel JC Jr. Early growth of rabbit trophoblast. Am Naturalist 1964; 98:85–97.

    Article  Google Scholar 

  4. Kane MT, Foote RH. Culture of two- and four-cell rabbit embryos to the expanding blastocyst stage in synthetic media. Proc Soc Exp Biol Med 1970; 113:921–5.

    Google Scholar 

  5. Kane MT. In vitro growth of preimplantation rabbit embryos. In: Bavister BD, ed. The mammalian preimplantation embryo: regulation of growth and differentiation in vitro. New York: Plenum Press, 1987:193–217.

    Google Scholar 

  6. Wright RWJ, Grammer J, Bondioli K, Kuzan F, Menino AJ. Protein content of porcine embryos during the first nine days of development. Theriogenology 1981;15:235–9.

    Article  PubMed  Google Scholar 

  7. Woolley DW. The nature of the anti-alopecia factor. Science 1940;92:384–5.

    Article  PubMed  CAS  Google Scholar 

  8. Eagle H, Oyama VI, Levy M, Freeman AE. myo-Inositol as an essential growth factor for normal and malignant human cells in tissue culture. J Biol Chem 1957;226:191–207.

    PubMed  CAS  Google Scholar 

  9. McConnell F, Goldstein L. Volume regulation in Elasmobranch red blood cells. In: Beyenbach KW, ed. Cell volume regulation. Basel: Karger, 1990: 114–31.

    Google Scholar 

  10. Kleinzeller A, Ziyadeh FN. Cell volume regulation in epithelia with emphasis on the role of osmolytes and the cytoskeleton. In: Beyenbach KW, ed. Cell volume regulation. Basel: Karger, 1990:59–86.

    Google Scholar 

  11. Strange K, Morrison R, Heilig CW, DiPietro S, Gullans SR. Upregulation of inositol transport mediates inositol accumulation in hyperosmolar brain cells. Am J Physiol 1991;260:C784–90.

    PubMed  CAS  Google Scholar 

  12. Low MG. Biochemistry of the glycosyl-phosphatidylinositol membrane protein anchors. Biochem J 1987;244:1–13.

    PubMed  CAS  Google Scholar 

  13. Ferguson MAJ, Williams AF. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem 1988;57:285–320.

    Article  PubMed  CAS  Google Scholar 

  14. Saltiel AR, Cuatrecasas P. Insulin stimulates the generation from hepatic membranes of modulators derived from an inositol glycolipid. Proc Natl Acad Sci USA 1986;83:5793–7.

    Article  PubMed  CAS  Google Scholar 

  15. Saltiel AR. The role of glycosyl-phosphoinositides in hormone action. J Bioenerg Biomembr 1991;23:29–41.

    PubMed  CAS  Google Scholar 

  16. Nishizuka Y. Perspectives on the role of protein kinase C in stimulus-response coupling. J Natl Cancer Inst 1986;76:363–70.

    PubMed  CAS  Google Scholar 

  17. Berridge MJ. Inositol lipids and cell proliferation. Biochim Biophys Acta 1987;907:33–45.

    PubMed  CAS  Google Scholar 

  18. Berridge MJ, Irvine RF. Inositol phosphates and cell signalling. Nature (London) 1989;341:197–204.

    Article  PubMed  CAS  Google Scholar 

  19. Michell RH, Drummond AH, Downes CP, eds. Inositol lipids in cell signalling. London: Academic Press, 1989.

    Google Scholar 

  20. Bell RM, Burns DJ. Lipid activation of protein kinase-C. J Biol Chem 1991;266:4661–4.

    PubMed  CAS  Google Scholar 

  21. Daniel JC Jr. Vitamins and growth factors in the nutrition of rabbit blastocysts in vitro. Growth 1967;31:71–7.

    PubMed  CAS  Google Scholar 

  22. Kane MT. The effects of water soluble vitamins on the expansion of rabbit blastocysts. J Exp Zool 1988;245:220–3.

    Article  PubMed  CAS  Google Scholar 

  23. Kane MT. Effects of the putative phospholipid precursors, inositol, choline, serine and ethanolamine, on formation and expansion of rabbit blastocysts in vitro. J Reprod Fertil 1989;87:275–9.

    Article  PubMed  CAS  Google Scholar 

  24. Kane MT, Bavister BD. Vitamin requirements for development of eight-cell hamster embryos to hatching blastocysts in vitro. Biol Reprod 1988; 39:1137–43.

    Article  PubMed  CAS  Google Scholar 

  25. Gregoire AT, Gongsakdi D, Rakoff AE. The presence of inositol in genital tract secretions of the female rabbit. Fertil Steril 1962;13:432–5.

    PubMed  CAS  Google Scholar 

  26. Lewin LM, Yannai Y, Melmed S, Weiss M. myo-Inositol in the reproductive tract of the female rat. Int J Biochem 1982;14:147–50.

    Article  PubMed  CAS  Google Scholar 

  27. Maslanski JA, Busa WB. A sensitive and specific mass assay for myo-inositol and inositol phosphates. In: Irvine RF, ed. Methods in inositide research. New York: Raven Press, 1990:113–26.

    Google Scholar 

  28. Flynn TJ, Hillman N. Lipid synthesis from [U-14C] glucose in preimplantation mouse embryos in culture. Biol Reprod 1978;19:922–6.

    Article  PubMed  CAS  Google Scholar 

  29. Simmons D, Bomford J, Ng LL. myo-Inositol influx into human leucocytes: methods of measurement and the effect of glucose. Clin Sci 1990;78:335–41.

    PubMed  CAS  Google Scholar 

  30. Wiesinger H. myo-Inositol transport in mouse astroglia-rich primary cultures. J Neurochem 1991;56:1698–1704.

    Article  PubMed  CAS  Google Scholar 

  31. Sherman WR. Inositol homeostasis, lithium and diabetes. In: Michell RH, Drummond AH, Downes CP, eds. Inositol lipids in cell signalling. London: Academic Press, 1989:39–79.

    Google Scholar 

  32. Busa WB, Gimlich RL. Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediate or a diacylglycerol analog. Dev Biol 1989;132:315–24.

    Article  PubMed  CAS  Google Scholar 

  33. Harvey MB, Kaye PL. Insulin stimulates protein synthesis in compacted mouse embryos. Endocrinology 1988;122:1182–4.

    Article  PubMed  CAS  Google Scholar 

  34. Harvey MB, Kaye PL. Insulin and IGF-1 are anabolic and mitogenic in preimplantation mouse embryos. Cell Differ Dev 1989;27:S31.

    Article  Google Scholar 

  35. Heyner S, Smith RM, Schultz GA. Temporally regulated expression of insulin and insulin-like growth factors and their receptors in early mammalian development. Bioessays 1989;11:171–6.

    Article  PubMed  CAS  Google Scholar 

  36. Harvey MB, Kaye PL. Insulin increases the cell number of the inner cell mass and stimulates morphological development of mouse blastocysts in vitro. Development 1990;110:963–7.

    PubMed  CAS  Google Scholar 

  37. Harvey MB, Kaye PL. IGF-2 receptors are first expressed at the 2-cell stage of mouse development. Development 1991;111:1057–60.

    PubMed  CAS  Google Scholar 

  38. Rappolee DA, Brenner CA, Schultz R, Mark D, Werb Z. Developmental expression of PDGF, TGF-α, and TGF-β genes in preimplantation mouse embryos. Science 1988;241:1823–5.

    Article  PubMed  CAS  Google Scholar 

  39. Paria BC, Dey SK. Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors. Proc Natl Acad Sci USA 1990;87:4756–60.

    Article  PubMed  CAS  Google Scholar 

  40. Kane MT. In vitro culture of two- to four-cell rabbit embryos to expanding blastocysts in serum extracts and synthetic media [Ph.D. thesis]. Cornell University, 1969.

    Google Scholar 

  41. Maurer RR. Advances in rabbit embryo culture. In: Daniel JC Jr, ed. Methods in mammalian reproduction. New York: Academic Press, 1978: 259–72.

    Google Scholar 

  42. Fischer B. Development retardation in cultured preimplantation rabbit embryos. J Reprod Fertil 1987;79:115–23.

    Article  PubMed  CAS  Google Scholar 

  43. Kane MT. Energy substrates and culture of single-cell rabbit ova to blastocysts. Nature (London) 1972;238:468–9.

    Article  PubMed  CAS  Google Scholar 

  44. Seidel GE Jr, Bowen RA, Kane MT. In vitro fertilization, culture and transfer of rabbit ova. Fertil Steril 1976;27:861–70.

    PubMed  CAS  Google Scholar 

  45. Brinster RL. A method for the in vitro cultivation of mouse ova from two-cell to blastocyst. Exp Cell Res 1963;32:205–8.

    Article  PubMed  CAS  Google Scholar 

  46. Ham RG. An improved nutrient solution for diploid Chinese hamster and human cell lines. Exp Cell Res 1963;29:515–26.

    Article  PubMed  CAS  Google Scholar 

  47. Maurer RR, Beier HM. Uterine proteins and development in vitro of rabbit pre-implantation embryos. J Reprod Fertil 1976;48:33–41.

    Article  PubMed  CAS  Google Scholar 

  48. Kane MT, Headon DR. The role of commercial bovine serum albumin preparations in the culture of one-cell rabbit embryos to blastocysts. J Reprod Fertil 1980;60:469–75.

    Article  PubMed  CAS  Google Scholar 

  49. Kane MT. Variability in different lots of commercial bovine serum albumin affects both cell multiplication and hatching of rabbit blastocysts in culture. J Reprod Fertil 1983;69:555–8.

    Article  PubMed  CAS  Google Scholar 

  50. Kane MT. A survey of the effects of proteases and glycosidases on culture of rabbit morulae to blastocysts. J Reprod Fertil 1986;78:225–30.

    Article  PubMed  CAS  Google Scholar 

  51. Kane MT. A low molecular weight extract of bovine serum albumin stimulates rabbit blastocyst cell division and expansion. J Reprod Fertil 1985;73:147–50.

    Article  PubMed  CAS  Google Scholar 

  52. Gray CW, Morgan PM, Kane MT. Purification of an embryotrophic factor from commercial bovine serum albumin and its identification as citrate. J Reprod Fertil 1991;94:471–80.

    Google Scholar 

  53. McKiernan SH, Bavister BD. Different lots of bovine serum albumin inhibit or stimulate in vitro development of hamster embryos. In Vitro Cell Dev Biol 1992;28A:154–6.

    Article  PubMed  CAS  Google Scholar 

  54. Brinster RL. Studies on the development of mouse embryos in vitro, II. The effect of energy source. J Exp Zool 1965;158:59–68.

    Article  PubMed  CAS  Google Scholar 

  55. Brinster RL, Thomson JL. Development of eight-cell mouse embryos in vitro. Exp Cell Res 1966;42:308–15.

    Article  PubMed  CAS  Google Scholar 

  56. Daniel JC Jr. The pattern of utilization of respiratory metabolic intermediates by preimplantation rabbit embryos in vitro. Exp Cell Res 1967;47:619–24.

    Article  PubMed  CAS  Google Scholar 

  57. Chaberek S, Martell AE. Organic sequestering agents. New York: Wiley and Sons, 1959.

    Google Scholar 

  58. Cho MJ, Scieszka JF, Burton PS. Citric acid as an adjuvant for transepithelial transport. Int J Pharmaceutics 1989;52:79–81.

    Article  CAS  Google Scholar 

  59. Abramczuk J, Solter D, Koprowski H. The beneficial effects of EDTA on development of mouse one-cell embryos in chemically defined medium. Dev Biol 1977;61:378–83.

    Article  PubMed  CAS  Google Scholar 

  60. Chatot CL, Ziomek CA, Bavister BD, Lewis JL, Torres I. An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J Reprod Fertil 1989;86:679–88.

    Article  PubMed  CAS  Google Scholar 

  61. Toyoda Y, Azuma S, Takeda S. Effects of chelating agents on preimplantation development of mouse embryos fertilized in vitro. In: Yoshinaga K, Mori T, eds. Development of preimplantation embryos and their environment. New York: Alan R. Liss, 1989:171–9.

    Google Scholar 

  62. Goodridge AG. Regulation of the activity of acetyl coenzyme A carboxylase by palmitoyl coenzyme A and citrate. J Biol Chem 1972;247:6946–52.

    PubMed  CAS  Google Scholar 

  63. Goodridge AG. Regulation of fatty acid synthesis in isolated hepatocytes. Evidence for a physiological role for long chain fatty acyl coenzyme A and citrate. J Biol Chem 1973;248:4318–26.

    PubMed  CAS  Google Scholar 

  64. Barbehenn EK, Wales RG, Lowry OH. The explanation for the blockade of glycolysis in early mouse embryos. Proc Natl Acad Sci USA 1974;71:1056–64.

    Article  PubMed  CAS  Google Scholar 

  65. Kane MT, Bavister BD, Fahy MM. Water-soluble vitamins stimulate in vitro development of rabbit and hamster blastocysts [473]. Proc 11th Annu Congr Anim Reprod Artif Insem, 1988.

    Google Scholar 

  66. Rizzino A. Defining the roles of growth factors during early mammalian development. In: Bavister BD, ed. The mammalian preimplantation embryo: regulation of growth and differentiation in vitro. New York: Plenum Press, 1987:151–74.

    Google Scholar 

  67. Wood SA, Kaye PL. Effects of epidermal growth factor on preimplantation mouse embryos. J Reprod Fertil 1989;85:575–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Kane, M.T., Fahy, M.M. (1993). Blastocyst Development and Growth: Role of Inositol and Citrate. In: Bavister, B.D. (eds) Preimplantation Embryo Development. Serono Symposia, USA Norwell, Massachusetts. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9317-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9317-7_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9319-1

  • Online ISBN: 978-1-4613-9317-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics