Skip to main content

Immunomodulating Role of Growth Hormone

  • Conference paper
Growth Hormone II

Part of the book series: Serono Symposia USA Norwell, Massachusetts ((SERONOSYMP))

Abstract

It is generally accepted that the immune system, although regulated to a large extent by intrinsic cellular and humoral events, is sensitive to signals generated out of the immune network, namely, in the nervous and endocrine systems. This assumption is supported by two Unes of experimental evidence: first, that spontaneous or induced alterations in the neuroendocrine system may cause functional modifications of immune reactivity (1) and, second, that receptor sites for many neuropeptides and protein hormones are present in lymphoid cells (2). On the other hand, the neuroendocrine system seems to act not only as a modulator of the immune network, but as a target for signals generated within the immune system. Examples of such interactions are the alterations that can be induced in the neuroendocrine balance either by removal of relevant lymphoid organs, such as the thymus (3), or by the functioning of the immune system itself, such as the production of lymphokines and cytokines with neuroendocrine-modulating effects (4, 5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fabris N, Mocchegiani E, Muzzioli M, Provinciali M. Neuroendocrine-thymus interactions: perspectives for intervention in aging. Ann NY Acad Sci 1988;521:72–87.

    Article  PubMed  CAS  Google Scholar 

  2. Fabris N, Provinciali M. Hormones. In: Nelson D, ed. Natural immunity. Academic Press, 1990:306–47.

    Google Scholar 

  3. Pierpaoli W, Fabris N, Sorkin E. Developmental hormones and immunological maturation. In: Wolstenholme GE, Knight J, eds. Hormones and the immune response. Ciba Study Group no. 36. London: Churchill, 1970:126–43.

    Google Scholar 

  4. Weigent DA, Carr DJ, Blalock JE. Bidirectional communication between the neuroendocrine and immune system. Common hormones and hormone receptors. Ann NY Acad Sci 1990;579:17–27.

    Article  PubMed  CAS  Google Scholar 

  5. Besedovsky HO, Del Rey A. Immune-neuroendocrine circuits: integrative role of cytokines. In: Frontiers in neuroendocrinology. New York: Raven Press, 1992;13(1):61–94.

    Google Scholar 

  6. Fabris N. Pathways of neuroendocrine-immune interactions and their impact with aging process. In: Facchini A, Haaijman JJ, Labo G, eds. Immuno-regulation in aging. Rijswijk, The Netherlands: Eurage, 1986:127–30.

    Google Scholar 

  7. Fabris N. Biomarkers of aging in the neuroendocrine-immune domain: time for a new theory of aging. In: Aging and cellular defence mechanisms. Ann NY Acad Sci 1992.

    Google Scholar 

  8. Fabris N. Neuroendocrine-thymus interactions during development and aging. In: Grossman CJ, ed. Hormones and immunity-bilateral communication between the endocrine and immune systems. New York: Springer-Verlag, 1992.

    Google Scholar 

  9. Savino W, Dardenne M. Thymic hormone containing cells, VI. Immuno-histologic evidence for the simultaneous presence of thymulin, thymopoietin and thymosin a-1 in normal and pathological human thymuses. Eur J Immunol 1984;14:987–91.

    Article  PubMed  CAS  Google Scholar 

  10. Robert F, Geenen V. Thymic neuropeptides and T-lymphocytes development. Ann NY Acad Sci USA 1992;650:99–104.

    Article  Google Scholar 

  11. Haynes BF, Shimizu K, Eisembarth GS. Identification of human and rodent thymus endothelium using tetanus toxin and monoclonal antibody A2B5. J Clin Invest 1983;71:9–14.

    Article  PubMed  CAS  Google Scholar 

  12. Dardenne M, Pleau JM, Nabama B, et al. Contribution of zinc and other metals to the biological activity of the serum thymic factors. Proc Natl Acad Sci USA 1982;79:5370–4.

    Article  PubMed  CAS  Google Scholar 

  13. Fabris N, Mocchegiani E, Amadio L, Zannotti M, Licastro F, Franceschi C. Thymic hormone deficiency in normal aging and Down’s syndrome: is there a primary failure of the thymus? Lancet 1984;1:983–6.

    Article  PubMed  CAS  Google Scholar 

  14. Fraker PJ, Gershwin ME, Good MA, Prasad AS. Interrelationship between zinc and immune function. Fed Proc 1985;45:1474–9.

    Google Scholar 

  15. Fabris N, Mocchegiani E, Muzzioli M, Provinciali M. Role of zinc in neuroendocrine-immune interactions during aging. Ann NY Acad Sci 1991;621:314–26.

    Article  PubMed  CAS  Google Scholar 

  16. Travaglini P, Moriondo P, Togni E, et al. Effect of oral zinc administration on prolactin and thymulin circulating levels in uremic patients. J Clin Endocrinol Metab 1989;68:186–90.

    Article  PubMed  CAS  Google Scholar 

  17. Fabris N, Mocchegiani E, Provinciali M. Zinc, immunity, and aging. In: Goldstein AL, ed. Zinc, immunity and aging. Biochemical advances in aging. New York: Plenum Press, 1990:271–81.

    Google Scholar 

  18. Prasad AS. Clinical, endocrinological and biochemical effects of zinc-deficiency. J Clin Endocrinol Metab 1985;14:567–89.

    Article  CAS  Google Scholar 

  19. Fabris N, Pierpaoli W, Sorkin E. Hormones and the immunological capacity, III. The immunodeficiency diseases of the hypopituitary Snell-Bagg dwarf mouse. Clin Exp Immunol 1971a;9:209–25.

    PubMed  Google Scholar 

  20. Fabris N, Pierpaoli W, Sorkin E. Hormones and the immunological capacity, IV. Restorative effects of developmental hormones of lymphocytes on the immunodeficiency syndrome of the dwarf mouse. Clin Exp Immunol 1971b;9:227–40.

    PubMed  Google Scholar 

  21. Bianchi E, Pierpaoli W, Sorkin E. Cytological changes in the mouse anterior pituitary after neonatal thymectomy: a light and electron microscopical study. J Endocrinol 1971;51:1–6.

    Article  CAS  Google Scholar 

  22. Pierpaoli W, Besedovsky HO. Role of the thymus in programming of neuroendocrine function. Clin Exp Immunol 1975;20:325–30.

    Google Scholar 

  23. Roth JA, Kaeberle ML, Grier RL, Hopper JG, Spiegel HE, McAllister HA. Improvement in clinical condition and thymus morphological features associated with growth treatment of immunodeficient dwarf dogs. Am J Vet Res 1984;45:1151–5.

    PubMed  CAS  Google Scholar 

  24. Nagy E, Berczi I, Friesen NG. Regulation of immunity in rats by lactogenic and growth hormones. Acta Endocrinol (Copenh) 1983;102:351–6.

    CAS  Google Scholar 

  25. Berczi I. The effects of growth hormone and related hormones on the immune system. In: Berczi I, ed. Pituitary function and immunity. Boca Raton, FL: CRC Press, 1983:133–59.

    Google Scholar 

  26. Hirokawa K, Utsuyama M, Kasai M, Konno A, Kurashima C, Morizumi E. Age-related hypoplasia of the thymus and T-cell system in the Buffalo rat. Virchows Arch [B] 1990;59:38–47.

    Article  CAS  Google Scholar 

  27. Pelletier M, Montplaisir S, Dardenne M, Bach JF. Thymic hormone activity and spontaneous autoimmunity in dwarf mice and their littermates. Immunology 1976;30:783–8.

    PubMed  CAS  Google Scholar 

  28. Fabris N, Mocchegiani E, Muzzioli M, Imberti R. Thymus-neuroendocrine network. In: Fabris N, Garaci E, Hadden J, Mitchison NA, eds. Immuno-regulation. New York: Plenum Press, 1983:323–34.

    Google Scholar 

  29. Abbassi V, Bellanti JA. Humoral and cell-mediated immunity in growth hormone-deficient children: effect of therapy with human growth hormone. Pediatr Res 1985;19:299–301.

    Article  PubMed  CAS  Google Scholar 

  30. Rapaport R, Oleske J, Ahdieh H, et al. Effects of human growth hormone on immune functions: in vitro studies on cells of normal and growth hormone-deficient children. Life Sci 1987;41:2319–24.

    Article  PubMed  CAS  Google Scholar 

  31. Sipponen P, Similia S, Collan Y, Autere T, Herva R. Familial syndrome with panhypopituitarism, hypoplasia of hypophysis and poorly developed sella turgica. Arch Dis Child 1978;53:664–70.

    Article  PubMed  CAS  Google Scholar 

  32. Mocchegiani E, Paolucci P, Balsamo A, Cacciari E, Fabris N. Influence of growth hormone on thymic endocrine activity in humans. Horm Res 1990; 33:248–55.

    Article  PubMed  CAS  Google Scholar 

  33. Travaglini P, Mocchegiani E, Togni E, et al. Thymulin and zinc circulating level in patient with GH and PRL secreting pituitary adenomas. Int J Neurosci 1990;51:269–71.

    Article  PubMed  CAS  Google Scholar 

  34. Travaglini P, Mocchegiani E, De Min C, Re T, Fabris N, Faglia G. Zinc and bromocriptine long-term administration in patients with prolactinomas: effects on prolactin and thymulin circulating levels. Int J Neorosci 1991; 59:119–25.

    Article  CAS  Google Scholar 

  35. Travaglini P, Mocchegiani E, De Min C, Re T, Fabris N. Modifications of thymulin titers in patients affected with prolonged low or high zinc circulating levels are independent of patients’ age. Arch Gerontol Geriatr 1992; suppl 3:349–66.

    Google Scholar 

  36. Finkelstein JW, Roffwarg HP, Boyar RM, Kream J, Hellman L. Age-related change in the twenty-four spontaneous secretions of growth hormone. J Clin Endocrinol Metab 1972;35:665–70.

    Article  PubMed  CAS  Google Scholar 

  37. Gil-Ad I, Gurewitz R, Marcovivi O, Rosenfeld J, Laron Z. Effect of aging on human plasma growth hormone response to Clonidine. Mech Ageing Dev 1984;27:97–100.

    Article  PubMed  CAS  Google Scholar 

  38. Sontag WE, Gough MA. Growth hormone releasing hormone induced release of growth hormone in aging male rats: dependence on pharmacological manipulation and endogenous somatostatin release. Neuroendocrinology 1988;47:482–8.

    Article  Google Scholar 

  39. Rudman D, Nagraj HS, Jackson DL, Rudman IW, Boswell J, Pucci DC. Hyposomatomedinemia in the men of a veteran administration nursing home: prevalence and correlates. Gerontology 1987;33:307–14.

    Article  PubMed  CAS  Google Scholar 

  40. Kelley KW, Brief S, Westly HJ, et al. GH3 pituitary adenoma cells can reverse thymic aging in rats. Proc Natl Acad Sci USA 1986;83:5663–7.

    Article  PubMed  CAS  Google Scholar 

  41. Davila DR, Brief S, Simon J, Hammer RE, Brinster RL, Kelley KW. Role of growth hormone in regulating T-dependent immune events in aged, nude and transgenic rodents. J Neurosci Res 1987;18:108–16.

    Article  PubMed  CAS  Google Scholar 

  42. Goff BL, Roth JA, Arp LH, Incefy GS. Growth hormone treatment stimulates thymulin production in aged dogs. Clin Exp Immunol 1987;68:580–7.

    PubMed  CAS  Google Scholar 

  43. Cross RJ, Campbell JL, Markzsbery WR, Roszman TL. Transplantation of pituitary grafts fail to restore immune function and to reconstitute the thymus glands of aged mice. Mech Ageing Dev 1990;56:11–22.

    Article  PubMed  CAS  Google Scholar 

  44. Weizman A, Weizman R, Hart J, Maoz B, Wijsenbeck H, David MB. The correlation of increased serum prolactin levels with decreased sexual desire and activity in elderly men. J Am Geriatr Soc 1983;31:485–8.

    PubMed  CAS  Google Scholar 

  45. Ban E, Gagnerault MC, Jammes H, Postel Vinay MC, Haour F, Dardenne M. Specific binding sites for growth hormone in cultured mouse thymic epithelial cells. Life Sci 1991;48:2141–8.

    Article  PubMed  CAS  Google Scholar 

  46. Pandian MR, Talwar GP. Effect of growth hormone on the metabolism of thymus and on the immune response against sheep erythrocytes. J Exp Med 1971;134:1095–113.

    Article  PubMed  CAS  Google Scholar 

  47. Arrenbrecht S. Specific binding of growth hormone to thymocytes. Nature 1974;252:255–7.

    Article  PubMed  CAS  Google Scholar 

  48. Geffner ME, Bersch N, Lippe BM, Rosenfeld RG, Hintz RL, Golde DW. Growth hormone mediates the growth of T-lymphoblast cell lines via locally generated insulin-like growth factor I. J Clin Endocrinol Metab 1990;71:464–9.

    Article  PubMed  CAS  Google Scholar 

  49. Dardenne M, Savino W, Gagnerault MC, Itoh T, Bach JF. Neuroendocrine control of thymic hormonal production, I. Prolactin stimulates in vivo and in vitro the production of thymulin by human and murine thymic epithelial cells. Endocrinology 1989;125:3–12.

    Article  PubMed  CAS  Google Scholar 

  50. Cunningham BC, Bass S, Fuh G, Wells JA. Zinc mediation of the binding of human growth hormone to the human prolactin receptor. Science 1990; 250:1709–12.

    Article  PubMed  CAS  Google Scholar 

  51. Deschaux P, Massengo B, Fontanges R. Endocrine interaction of the thymus with hypophysis, adrenals and testes: effects of two thymic extracts. Thymus 1979;1:95–100.

    PubMed  CAS  Google Scholar 

  52. Spangelo BL, Judd AM, Ross PC, et al. Thymosin fraction 5 stimulates prolactin and growth hormone release from anterior pituitary cells in vitro. Endocrinology 1987;121:2035–43.

    Article  PubMed  CAS  Google Scholar 

  53. Hall HRS, O’Grady MP, Farrah JM Jr. The hypothalamic-pituitary adrenal axis by thymic peptides. In: Hadden JW, Massek K, Nistico G, eds. Interactions among central nervous system, neuroendocrine and immune system. Rome: Pytagora Press, 1989:113–25.

    Google Scholar 

  54. Lippman M. Interactions of physic and endocrine factors with progression with neoplastic disease. In: Levy SM, ed. Biological mediators of behaviour and disease: neoplasia. Amsterdam: Elsevier, 1982:55–73.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Fabris, N., Mocchegiani, E. (1994). Immunomodulating Role of Growth Hormone. In: Bercu, B.B., Walker, R.F. (eds) Growth Hormone II. Serono Symposia USA Norwell, Massachusetts. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8372-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8372-7_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8374-1

  • Online ISBN: 978-1-4613-8372-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics