Skip to main content

Surface Energy as an Indicator of Interfacial Mechanical Response

  • Chapter
Book cover Tailoring Multiphase and Composite Ceramics
  • 702 Accesses

Abstract

Contact angles between silicon and a variety of silicon carbide-based fibers have been measured and correlated to the mechanical behavior of the fiber-matrix interface. Infiltration by the molten silicon into the fibers and/or reaction with excess carbon to form silicon carbide gives rise to low contact angles and high toughness interfaces. It is suggested that the high toughness of the interface is morphology-controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Cannon, Factors Controlling Interfacial Bond Strengths of Ceramic-Metal Interfaces, 87th Meeting of the American Ceramic Society, Cincinnati, OH, 1985.

    Google Scholar 

  2. J. T. Klomp, Sci. Ceram. 5: 501 (1970).

    CAS  Google Scholar 

  3. L. E. Murr, Interfacial Energetics in Metal-Metal, Metal-Ceramic, Metal-Semiconductor, and Related Solid-Solid and Liquid-Solid Systems in: “Surfaces and Interfaces in Ceramic-Metal Systems” J. A. Pask and A. G. Evans, eds. Plenum Press, New York (1981).

    Google Scholar 

  4. M. Humenik, Jr. and W. D. Kingery, Metal-Ceramic Interactions: III, J. Amer. Ceram. Soc. 37 [1] 18 (1954).

    Article  CAS  Google Scholar 

  5. N. Eustathopoulos, Energetics of Solid/Liquid Interfaces of Metals and Alloys, Int. Met. Rev. 28 [4] 189 (1983).

    CAS  Google Scholar 

  6. W. D. Kingery and M. Humenik, Jr., Surface Tensions at Elevated Temperatures, I, J. Phys. Chem. 57: 359 (1953).

    Article  CAS  Google Scholar 

  7. W. D. Kingery, Metal-Ceramic Interactions: IV, J. Amer. Ceram. Soc. 37 [2] 42 (1954).

    Article  CAS  Google Scholar 

  8. B. C. Allen and W. D. Kingery, Surface Tension and Contact Angles in Some Liquid Metal-Solid Ceramic Systems at Elevated Temperatures, Trans. Met. Soc. AIME 215 [23 30 (1959).

    Google Scholar 

  9. G. L. Mack, The Determination of Contact Angles from Measurements of Dimensions of Small Bubbles and Drops I: The Spheroidal Segment Method for Acute Angles and II: The Sessile Drop Method for Obtuse Angles, J. Phys. Chem. 40 [2] 159 (1936).

    Article  CAS  Google Scholar 

  10. D. B. Marshall, An Indentation Method for Measuring Matrix-Fiber Frictional Stresses in Ceramic Composites, J. Amer. Ceram. Soc. 67 [12] C259 (1984).

    Article  CAS  Google Scholar 

  11. P. Dokko and A. G. Evans, unpublished work.

    Google Scholar 

  12. G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, J. Amer. Ceram. Soc. 64 [9] 533 (1981).

    Article  CAS  Google Scholar 

  13. J. W. Patterson, Conduction Domains for Solid Electrolytes, J. Electrochem. Soc. 3 [7] 1033 (1971).

    Article  Google Scholar 

  14. P. Deines et al., Temperature-Oxygen Fugacity Tables for Selected Gas Mixtures in the System C-H-O at One Atmosphere Total Pressure, Bull Earth and Min. EXP . Sta. Penn. State Univ. 88: (1974).

    Google Scholar 

  15. T. J. Whalen and A. T. Anderson, Wetting of SiC, Si3N4, and Carbon by Si and Binary Si Alloys, J. Amer. Ceram. Soc. 50 [9–10] 396 (1975).

    Article  Google Scholar 

  16. Y. V. Naidich and G. M. Nevodnik, Wettability of the Surface of SiC Single Crystals by Molten Metals, Izv. Akad. Nauk SSSR Neorg. Mat 5 [12] 2066 (1969).

    CAS  Google Scholar 

  17. W. P. Minnear, The Reaction of Carbon with Liquid Silicon, 14th Biennial Conference on Carbon, Pennsylvania State University, 1979.

    Google Scholar 

  18. W. P. Minnear, Interfacial Energies in the Si/SiC System and the Si+C Reaction, J. Amer. Ceram. Soc. 65 [1] C10 (1982).

    Article  CAS  Google Scholar 

  19. K. T. Faber and A. G. Evans, Crack Deflection Processes — I, Acta Metall. 31 [4] 565 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Godard, H.T., Faber, K.T. (1986). Surface Energy as an Indicator of Interfacial Mechanical Response. In: Tressler, R.E., Messing, G.L., Pantano, C.G., Newnham, R.E. (eds) Tailoring Multiphase and Composite Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2233-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2233-7_54

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9309-5

  • Online ISBN: 978-1-4613-2233-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics