Skip to main content

A Foveated Retina-Like Sensor Using CCD Technology

  • Chapter
Analog VLSI Implementation of Neural Systems

Abstract

A CCD imager whose sampling structure is loosely modeled after the biological visual system is described. Its architecture and advantages over conventional cameras for pattern recognition are discussed. The sensor has embedded in its structure a logarithmic transformation that makes it size and rotation invariant. Simulations on real images using the actual sensor geometry have been performed to study the sensor performance for 2D pattern recognition and object tracking.

A CCD imager consisting of 30 concentric circles and 64 sensors per circle, whose pixel size increases linearly with eccentricity has been fabricated. The central part has a constant resolution with 102 photocells. The CCD is made in a three phase buried channel technology with triple poly and double metal layers. Preliminary results of the testing are given showing the validity of the design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. G. Collet, “Solid-State Image Sensors”, Sensors and Actuators, 10, 287–302 (1986).

    Article  Google Scholar 

  2. H. Shiraki, “Recent Progress of CCD Image Sensors”, Proc. 6th Sensor Symp.,153–159 (1986).

    Google Scholar 

  3. H. Veendrick, F. Steenhof, G. Davids, P. Hartog, E. Holle, K. Lismore, B. Pham, K. van der Sanden, A. Slob. J. Slotboom, G. Streutker, H. Van der Veen, W. Wiertsema, and A. van Zanten, “An 835 Kbit Video Serial Memory”, Tech. Digest 1988 Intern. Solid State Circuits Conf.,44–45, (1988).

    Google Scholar 

  4. J. Tieman, T. Vogelsong and A. J. Steckl, “Charge Domain Recursive Filters”, IEEE J. Solid-State Circuits, SC-17, 597–605 (1982).

    Article  Google Scholar 

  5. Y. Maki, T. Kondo, A. Izumi, I. Matsuda, T. Fukuda, T. Narabu., “A CMOS-CCD Comb Filter with Dropout Compensation for a VCR”, Tech. Digest 1988 Intern. Solid State Circuits Conf., 46–47 (1988).

    Google Scholar 

  6. A. Chiang, P. Bennett, B. Kosicki, R. Mountain, G. Lincoln, J. Reinhold, “A 100ns CCD 16-point Cosine Transform Processor”, Tech. Digest 1987 Int. Solid State Circuits Conf., 306–307, (1987).

    Google Scholar 

  7. E. Fossum, “Charge Domain Analog Signal Processing for Detector Arrays”, Nucl. Instr. and Methods, A275, 530–535 (1989).

    Google Scholar 

  8. A. Chiang, “A CCD Retina and Neural Net Processor”, Workshop on “Hardware Implementation of Neural Nets and Synapses”, eds. P. Mueller, C. Mead, Lau J. and J. Hopfield, San Diego, 171–182, (1988).

    Google Scholar 

  9. T. Nobusada, M. Azuma, H. Toyada, T. Kuroda, K. Horii, K. Otsuki, G. Kano, “Frame Transfer CCDD Sensor for HDTV Camera”, Tech. Digest 1989 Int. Solid State Circuits Conf., 88–89 (1989).

    Google Scholar 

  10. J. Tanner and C. Mead, “A correlated Optical Motion Detector”, Proc. Conf. Advanced Res. in VLSI, MIT, Cambridge, Jan. 1984, P. Penfield (ed), Artech House, Dedham, MA, p. 57 (1984).

    Google Scholar 

  11. M. Sivilotti, M. Mahowald, C. Mead, “Real Time Visual Computations using Analog CMOS Processing Arrays”, Stanford Conf. on VLSI, P. Losleben (ed), MIT Press, Cambridge, p. 295 (1987).

    Google Scholar 

  12. C. Mead, “Analog VLSI and Neural Systems”, Addison-Wesley Publ., Reading, MA (1989).

    MATH  Google Scholar 

  13. D. Hubel and R. Wiesel, “Receptive Fields and Functional Architecture of the Monkey Striate Cortex”, J. Physiol., 195, 215–143 (1968).

    Google Scholar 

  14. B. Dow, A. Snyder, R. Vautin, R. Bauer, “Magnification Factor and Receptive Field Size on Foveal Striate Cortex of the Monkey”, Experimental Brain Research, 44, 213–228, (1981).

    Article  Google Scholar 

  15. V. H. Perry and A. Cowey, “The Ganglion Cell and Cone Distributions in the Mokey’s Retina: Implications for Central Magnification Factors”, Vision Res., 25, 1795–1810 (1985).

    Article  Google Scholar 

  16. E. Schwartz, “Computational Anatomy and Functionall Architecture of Striate Cortex: A Spatial Mapping Approach to Perceptual Coding”, Vision Res., 20, 645–669 (1980).

    Article  Google Scholar 

  17. G. Sandini, V. Tagliasco “An Anthropomorphic Retina-like Structure for Scene Analysis”, Comp. Graphics and Image Proc., 14, 365–372 (1980).

    Article  Google Scholar 

  18. L. Massone, G. Sandini, V. Tagliasco, “Form-Invariant Topological Mapping Strategy for 2D Shape Recognition”, Comp. Graphics and Image Proc.,30, 1169–188 (1985).

    Google Scholar 

  19. C. R. Carlson, R. W. Klopfenstein, C. H. Anderson, “Spatially Inhomogeneous Scaled Transforms for Vision and Pattern Recongition”, Optics Letters, 6, 386–388 (1981)

    Article  Google Scholar 

  20. R. Jain, “Motion Stereo using Ego-motion Complex Logarithmic Mapping”, Rep.no. RSD-TR-3–86, Center for Res. Integr. Manuf., Univ. Michigan, Ann Abor, 1986.

    Google Scholar 

  21. M. McDonnell, “A Clarification on the Use of the Mellin Transform in Optical Pattern Recongition”, Opt. Commun. 25, 320–322 (1978).

    Article  Google Scholar 

  22. D. Casasent, D. Psaltis, “Position, Rotation, and Scale Invariant Optical Correlation”, Appl. Optics, 15, 1795–1799 (1976).

    Article  Google Scholar 

  23. T. Yatagai, K. Choji, H. Saito, “Pattern Classification using Optical Mellin Transform and Circular Photodiode Array”, Opt. Commun, 38, 162–165 (1981).

    Article  Google Scholar 

  24. R. Messner and H. Szu, “An Image Processing Architecture for Real Time Generation of Scale and Rotation Invariant Patterns”, Comp. Vision, Graphics and Image Proc., 31, 50–66 (1985).

    Article  Google Scholar 

  25. J. Van der Spiegel, J. Sevenhans, A. Theuwissen, J. Bosiers, I. Debusschere, G. Declerck, “Study of Different Sensors for High Resolution Linear CCD Imagers”, Sensors and Actuators, 6, 51–64 (1984).

    Article  Google Scholar 

  26. I. Debusschere, E. Bronckaers, C. Claeys, G. Kreider, J. Van der Spiegel, P. Bellutti, G. Soncini, P. Dario, F. Fantini, G. Sandini, “A 2D Retinal CCD Sensor for fast 2D Shape Recognition and Tracking”, 5th Int. Solid-State Sensor and Transducers Conf., Montreux, June 25–30, 1989; to be publisched in Sensors and Actuators, 20 (1989).

    Google Scholar 

  27. K. Aricanli and K. Desai, “Controller Chip for the Retinal Sensor”, Report EE442, Dept Electr. Eng., Univ. Pennsylvania, Philadelphia, Apr. (1989).

    Google Scholar 

  28. G. Sandini, F. Bosero, F. Bottino, A. Ceccherini, “The Use of an Anthropomorphic Visual Sensor for Motion Estimation and Object Tracking,” Proc. of the OSA 1989 Topical Meeting on Image Understanding and Machine Vision, June 12–14 (1989).

    Google Scholar 

  29. P. Mueller, J. Van der Spiegel, D. Blackman, T. Chiu, T. Clare, J. Dao, C. Donham, T.-P. Hsieh, M. Loinaz, “A Programmable Analog Neural Computer and Simulator” , in Advances in Neural Information Processing Systems 1, D. Touretzky (ed), Morgan Kaufmann Publ., San Mateo, CA, 712–719 (1989).

    Google Scholar 

  30. P. Mueller, D. Blackman, P. Spiro, R. Furman, “Neural Computation of Visual Images”, Proc. IEEE 1st Annual Int. Conf. Neural Networks, 4, 75–87, San Diego, June 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Van der Spiegel, J. et al. (1989). A Foveated Retina-Like Sensor Using CCD Technology. In: Mead, C., Ismail, M. (eds) Analog VLSI Implementation of Neural Systems. The Kluwer International Series in Engineering and Computer Science, vol 80. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1639-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1639-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8905-0

  • Online ISBN: 978-1-4613-1639-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics