Skip to main content

The Green Flagellate Chlamydomonas

  • Chapter
  • 307 Accesses

Abstract

Green flagellates belonging to the genus Chlamydomonas are widely used as a model in experimental studies. Chlamydomonas is one of the more suitable unicellular eukaryotic organisms for studying cell differentiation with modern techniques. This is due to the relative simplicity of the structure allied with the presence of a wide range of cell organelles, as well as the availability of a considerable body of information on the physiology, biochemistry, and genetics of this organism. Another advantage is that well-developed culture procedures are available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. S. Abros’kina, L. M. Vorob’eva, and K. V. Kvitko, “Chlorophyll luminescence in mutants of Chlorella and ChlamydomonasFiziol. Rast. 26, 383 (1979).

    Google Scholar 

  2. V. Ya. Alexandrov, “Stimulation of flagellum recovery in Chlamydomonas eugametos after heat injury,” Arch. Protistenk. 124, 345 (1981).

    Article  Google Scholar 

  3. M. Baslerovä and J. Dvoräkovä, Algarum, Hepaticarum, Muscorumque in Culturis Collectio., Nakladat. Českosl. Akad. ved., Praha (1962).

    Google Scholar 

  4. W. Behn and C. G. Arnold, “Localization of extranuclear genes by investigations of the ultrastructure in Chlamydomonas reinhardii,” Arch. Microbiol. 92, 83 (1973).

    Google Scholar 

  5. E. P. Bers, “Effect of cultivation conditions on productivity and certain physiological traits of Chlamydomonas reinhardii cells,” in: Experimental Algology [in Russian], Peterhof Biological Institute, Leningrad (1977).

    Google Scholar 

  6. P. Kh. Boyadzhiev, A. F. Smirnov, and K. V. Kvitko, “Microspectrophotometry of Chlamydomonas pigment mutants,” in: Control of Biosynthesis in Microorganisms [in Russian], Nauka, Krasnoyarsk (1973).

    Google Scholar 

  7. V. G. Bruce, “Mutants of the biological clock in Chlamydomonas reinhardiiGenetics 70, 537–548 (1972).

    PubMed  CAS  Google Scholar 

  8. V. G. Bruce and N. C. Bruce, “Circadian clock-controlled growth cycle in Chlamydomonas reinhardii,” in: International Cell Biology 1980–1981, H. G. Schweiger (ed.), Verlag B., New York (1981).

    Google Scholar 

  9. T. Cavalier-Smith, “Electron microscopy of zygospore formation in Chlamydomonas reinhardii,” Protoplasma 87, 297 (1976).

    Article  PubMed  CAS  Google Scholar 

  10. V. I. Chemerilova and K. V. Kvitko, “Study of mutations modifying pigmentation in Chlamydomonas reinhardii strains at various ploidity,” Genetika 11, 44–49 (1976).

    Google Scholar 

  11. K. S. Chiang, “Replication, transmission, and recombination of cytoplasmic DNA in Chlamydomonas reinhardii,” in; Autonomy and Biogenesis of Mitochondria and Chloroplasts, North Holland Publishing Co., Amsterdam (1971).

    Google Scholar 

  12. A. S. Chunaev, “Genetics of photosynthesis in Chlamydomonas reinhardii,” Usp. Sovrem. Genet. 12, 63–92 (1984).

    CAS  Google Scholar 

  13. A. S. Chunaev, V. G. Ladygin, T. A. Gavrilenko, L. P. Krela, and G. A. Kornyushenko, “Inheritance of the trait ‘absence of chlorophyll b’ and the variability of the light-collecting complex in the meiotic progeny C-48 of Chlamydomonas reinhardii,” Genetika 17, 2013–2024 (1981).

    CAS  Google Scholar 

  14. A. W. Coleman, “Sexuality,” in: Physiology and Biochemistry of Algae, Academic Press, New York-London (1962).

    Google Scholar 

  15. Culture Collection of Algae and Protozoa, List of Strains, Cambridge University, Cambridge (1976).

    Google Scholar 

  16. D. R. Davies and K. Roberts, “Genetics of cell wall synthesis in Chlamydomonas reinhardii,” in: The Genetics of Algae, R. A. Lewin (ed.), Oxford (1976).

    Google Scholar 

  17. V. A. Dogel, Invertebrate Zoology [in Russian], Vysshaya Shkola, Moscow (1981).

    Google Scholar 

  18. H. Ettl, “Chlamydomonas als geeigneter Modellorganismus für vergleichende cytomorphologische Untersuchungen,” Algol. Stud. 5, 259 (1971).

    Google Scholar 

  19. H. Ettl, “Die Gattung Chlamydomonas Ehrenberg,” Beih. Nova Hedwigia 49, 1–22 (1976).

    Google Scholar 

  20. J. Friedman, A. L. Colwin, and L. H. Colwin, “Fine structural aspects of fertilization in Chlamydomonas reinhardiiJ. Cell Sci. 3, 115–128 (1968).

    Google Scholar 

  21. N. Gillham, “The uniparental inheritance in Chlamydomonas,” Am. Nat. 103, 355–387 (1969).

    Article  CAS  Google Scholar 

  22. U. W. Goodenough, “Sexual microbiology: mating reactions of Chlamydomonas reinhardii, Tetrahymena termophila and Saccharomyces cerevisiae,” in: Eukaryotic Microbial Cell, G. W. Gooday et al. (eds.), Cambridge University Press, Cambridge (1980).

    Google Scholar 

  23. U. W. Goodenough and R. P. Levine, “Chloroplast structure and function in ac-20, a mutant strain of Chlamydomonas reinhardii. III. Chloroplast ribosomes and membrane organization,” J. Cell Biol. 44, 547 (1970).

    Article  PubMed  CAS  Google Scholar 

  24. C. S. Gowans, “Genetics of Chlamydomonas moewusii and Chlamydomonas eugametes” in: The Genetics of Algae, R. A. Lewin (ed.), Oxford (1976).

    Google Scholar 

  25. B. V. Gromov, “The collection of algae cultures of Leningrad University Biological Institute,” Tr. Peterhof. Biol. Inst. Leningr. Gos. Univ. 19, 125 (1965).

    Google Scholar 

  26. B. V. Gromov and N. N. Titova, “Culture collection of algae at the Microbiology Laboratory, Biological Institute, Leningrad State University,” in: Cultivation of Collection Strains of Algae [in Russian], Leningrad University Press, Leningrad (1983).

    Google Scholar 

  27. I. Gyurjian, G. Erdös, and A. H. Nagy, “Polypeptide composition of thylacoid membrane in pigment-deficient mutants of Chlamydomonas reinhardii” in: European Meeting on Molecular Genetics and Biology of Unicellular Algae, Liege (1980).

    Google Scholar 

  28. E. H. Harris, “Nuclear gene loci of Chlamydomonas reinhardii,” in: Genetic Maps, S. O’Brien (ed.), Vol. 5, National Cancer Inst. (1982).

    Google Scholar 

  29. S. H. Howell, W. J. Blaschko, and C. W. Drew, “Inhibitor effects during the cell cycle in Chlamydomonas reinhardii. Determination of transition points in asynchronous cultures,” J. Cell Biol. 67, 126 (1975).

    Article  PubMed  CAS  Google Scholar 

  30. T. W. James, “Induced division synchrony in the flagellates,” in: Synchrony in Cell Division and Growth, Interscience, New York-London (1964).

    Google Scholar 

  31. R. F. Jones, “Physiology and biochemical aspects of growth and gametogenesis in Chlamydomonas reinhardii,” Ann. N.Y. Acad. Sci. 175, 648–659 (1970).

    Article  CAS  Google Scholar 

  32. N. V. Karapetyan, M. G. Rakhimberdieva, N. G. Bukhov, and I. Gyurjan, “Characterization of photosystems of Chlamydomonas reinhardii mutants differing in their fluorescence yield,” Photosynthetica 14, 48–54 (1980).

    CAS  Google Scholar 

  33. J. R. Kates, K. S. Chiang, and R. F. Jones, “Studies on DNA replication during synchronized vegetative growth and gametic differentiation in Chlamydomonas reinhardii,” Exp. Cell Res. 49, 121–135 (1968).

    Article  PubMed  CAS  Google Scholar 

  34. K. B. Kvitko, “Biology and genetics of Chlamydomonas reinhardii 137C,” in: Experimental Algology [in Russian], Leningrad (1977).

    Google Scholar 

  35. K. Y. Kvitko and T. N. Borshevskaya, “Peterhof collection of pigmentation mutants of green algae,” in: Methods Used to Study the Structure of Photosynthetic Apparatus [in Russian], Pushchino-on-Oka (1972).

    Google Scholar 

  36. K. V. Kvitko and V. I. Chemerilova, “Adaptive significance of polyploidy in algae, chlamydomonads taken as an example,” in: Evolutionary Genetics [in Russian], Leningrad University Press, Leningrad (1982).

    Google Scholar 

  37. K. V. Kvitko, P. Kh. Boyadzhiev, A. S. Chunaev, B. T. Mukhamadiev, A. A. Baranov, and V. S. Saakov, “Genotypic and phenotypic variation of pigment-lipoprotein complex of the green algae mutants. 2. Study of the absorption spectra of mutants with altered response to illumination in Chlamydomonas reinhardii 137C,” in: Experimental Algology [in Russian], Leningrad (1977).

    Google Scholar 

  38. K. V. Kvitko, V. V. Tugarinov, Ph. T. Ho, A. S. Chunaev, E. E. Temper, and B. T. Mukhamediev, “Mutational analysis as a method of studying genotype structure of green algae,” in: Genetic Aspects of Photosynthesis, Yu. S. Nasyrov (ed.), Junk (1975).

    Google Scholar 

  39. K. V. Kvitko, VI. VI. Matveev, and A. C. Chunaev, “Motility and behavior of Chlamydomonas and their changes induced by mutations,” in: Motility and Behavior of Unicellular Animals [in Russian], Nauka, Leningrad (1978).

    Google Scholar 

  40. K. V. Kvitko, T. N. Borshchevskaya, A. S. Chunaev, and V. V. Tugarinov, “Peterhof’s genetical collection of strains of Chlorella, Scenedesmus, Chlamydomonas” in: Cultivation of Collection Strains of Algae [in Russian], Leningrad University Press, Leningrad (1983).

    Google Scholar 

  41. R. P. Levine, “Preparation and properties of mutant strains of Chlamydomonas reinhardii,” in: Methods in Enzymology, Vol. 23, Part A. Academic Press, New York-London (1971).

    Google Scholar 

  42. R. P. Levine and W. T. Ebersold, “Gene recombination in Chlamydomonas reinhardii,” Cold Spring Harbor Symp. Quant. Biol. 23, 395–410 (1958).

    Google Scholar 

  43. R. P. Levine and W. T. Ebersold, “Genetics and cytology of Chlamydomonas,” Annu. Rev. Microbiol. 14, 197¬216 (1960).

    Article  PubMed  CAS  Google Scholar 

  44. R. P. Levine and U. Goodenough, “The genetics of photosynthesis and of the chloroplast in Chlamydomonas reinhardii,” Annu. Rev. Genet. 4,397¬407 (1970).

    Article  Google Scholar 

  45. R. A. Lewin, “The genetics of Chlamydomonas moewusii Gerloff,” J. Genet. 51, 543 (1953).

    Article  Google Scholar 

  46. R. A. Lewin, “Genetic control of flagellar activity in Chlamydomonas moewusii (Chlorophyta, Volvocales),” Phycologia 13, 45¬55 (1974).

    Article  Google Scholar 

  47. R. A. Lewin (ed.), The Genetics of Algae. Bot. Monographs, II, Oxford (1976).

    Google Scholar 

  48. R. Loppes, “Ethyl methane sulfonate: an effective mutagen in Chlamydomonas reinhardiiMol. Gen. Genet. 102, 299–231 (1968).

    Article  Google Scholar 

  49. R. Loppes, R. Motagne, and P. J. Strijkert, “Complementation of the Arg 7 locus in Chlamydomonas reinhardiiHeredity 28, 239–251 (1972).

    Article  Google Scholar 

  50. Y. Maynell and E. Maynell, Experimental Microbiology [Russian translation], Mir, Moscow (1967).

    Google Scholar 

  51. R. F. Matagne, R. Deltour, and L. Ledoux, “Somatic fusion between cell wall mutants of Chlamydomonas reinhardiiNature (London) 278, 344–346 (1979).

    Article  Google Scholar 

  52. F. Moewus, “Carotinoid derivative als geschlechtsbestimmende Stoffe von Algen,” Biol. Zbl. 60, 143–166 (1940).

    CAS  Google Scholar 

  53. G. M. Padilla and J. R. Cook, “The development of techniques for synchronizing flagellates,” in: Synchrony in Cell Division and Growth, Interscience, New York-London (1972).

    Google Scholar 

  54. J. Randell and D. Starling, “Genetic determinants of flagellum phenotype in Chlamydomonas reinhardii,” in: “The Genetics of the Spermatozoon,” Bogtrykkereit Vorum, Edinburgh-N.T.-Copenhagen.

    Google Scholar 

  55. R. A. Lewin (ed.), reprinted in The Genetics of Algae, Oxford (1976).

    Google Scholar 

  56. R. W. Rubin and P. Filner, “Adenosine-3′,5′-cyclic monophosphate in Chlamydomonas reinhardii: influence on flagellar function and regeneration,” J. Cell Biol. 56, 628–635 (1973).

    Article  PubMed  CAS  Google Scholar 

  57. R. S. Ryan, D. Grant, Chiang Kwen-Sheng, and H. Swift, “Isolation of mitochondria and characterization of the mitochondrial DNA of Chlamydomonas reinhardii,” J. Cell Biol. 59, Pt. 2, 297a (1973a).

    Google Scholar 

  58. R. Sager, “Mendelian and non-Mendelian inheritance of streptomycin resistance in Chlamydomonas,” Proc. Natl. Acad. Sci. USA 40, 356–370 (1954).

    Article  PubMed  CAS  Google Scholar 

  59. R. Sager and Z. Ramanis, “A genetic map of non-Mendelian genes in Chlamydomonas,” Proc. Natl. Acad. Sci. USA 65, 593–600 (1970).

    Article  PubMed  CAS  Google Scholar 

  60. R. Sager and J. Tsubo, “Mutagenic effects of streptomycin in ChlamydomonasArch. Mikrobiol. 42, 159–175 (1962).

    Article  PubMed  CAS  Google Scholar 

  61. R. Sager, Cytoplasmic Genes and Organelles, Academic Press, New York (1972).

    Google Scholar 

  62. I. A. Sakharov and K. V. Kvitko, Genetics of Microorganisms [in Russian], Leningr. Gos. Univ., Leningrad (1967).

    Google Scholar 

  63. E. T. Schmeisser, D. M. Baumgartel, and S. H. Howell, “Gametic differentiation in Chlamydomonas reinhardii: cell cycle dependency and rates in attainment of mating competency,” Dev. Biol. 31. 31–37 (1973).

    Article  PubMed  CAS  Google Scholar 

  64. F. Schötz, H. Bathelt, C. G. Arnold, and O. Schimmer, “Die Architectur und Organization der Chlamydomonas-celle. Ergebnisse der Elektronenmikroskopie von Serienschnitten und der daraus resultierenden dreidimensionalen Reconstruktion,” Protoplasma 75, 229–254 (1972).

    Article  PubMed  Google Scholar 

  65. D. Starling, “Complementation tests in closely’linked flagellar genes in Chlamydomonas reinhardii,” Genet. Res. 14, 343–347 (1969).

    Article  PubMed  CAS  Google Scholar 

  66. R. C. Starr, “Algae cultures-sources and methods of cultivation,” in: Methods in Enzymology, Vol. 23, Part A, Academic Press, New York-London (1971).

    Google Scholar 

  67. R. C. Starr, “The culture collection of algae at University of Texas at Austin,” J. Phycol. 14, Suppl., 47–100 (1978).

    Article  Google Scholar 

  68. A. V. Stolbova, “Genetic analysis of pigment mutations of Chlamydomonas reinhardii,” Genetika 7, 90–94 (1971).

    CAS  Google Scholar 

  69. A. V. Stolbova, “Genetic analysis of pigment mutations in Chlamydomonas reinhardiiGenetika 8, 123–128 (1972).

    CAS  Google Scholar 

  70. A. V. Stolbova, “Genetic analysis of light-sensitive mutants of Chlamydomonas reinhardii” in: Genetic Aspects of Photosynthesis, Yu. S. Nasyrov and Z. Sestàk (eds.), Junk (1975).

    Google Scholar 

  71. R. Storms and P. J. Hastings, “A fine structure analysis of meiotic pairing in Chlamydomonas reinhardii,” Exp. Cell Res. 104, 39–46 (1977).

    Article  PubMed  CAS  Google Scholar 

  72. S. Surzycki, “Synchronously grown cultures of Chlamydomonas reinhardii,” in: Methods in Enzymology, Vol. 23, Part A, Academic Press, New York- London (1971).

    Google Scholar 

  73. S. Surzycki, U. W. Goodenough, R. P. Levine, and J. J. Armstrong, “Nuclear and chloroplast control of chloroplast structure and function in Chlamydomonas reinhardii,” in: Control of Organelle Development, 24th Symposium in Experimental Biology, Cambridge University Press, Cambridge (1970).

    Google Scholar 

  74. J. S. Sussenbach and P. J. Strikert, “Arginine metabolism in Chlamydomonas reinhardii,” Eur. J. Biochem. 8, 403–412 (1969).

    Article  PubMed  CAS  Google Scholar 

  75. D. P. Weeks and P. S. Collis, “Induction and synthesis of tubulin during the cell cycle and life cycle of Chlamydomonas reinhardii,” Dev. Biol. 69, 400–407 (1979).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Consultants Bureau, New York

About this chapter

Cite this chapter

Kvitko, K.V. (1990). The Green Flagellate Chlamydomonas . In: Dettlaff, T.A., Vassetzky, S.G. (eds) Animal Species for Developmental Studies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0503-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0503-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7839-9

  • Online ISBN: 978-1-4613-0503-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics