Skip to main content

Valence Ionization Processes in the VUV Region

  • Chapter
VUV and Soft X-Ray Photoionization

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

The vacuum-ultraviolet (VUV) region has a long-wavelength limit (~2000 Å) where air (particularly oxygen) begins to absorb radiation, but its lower limit is a bit fuzzy. Terms such as extreme ultraviolet or soft x-ray radiation are sometimes used to describe shorter-wavelength regions. We shall here employ a more pragmatic, though still cloudy limit, namely the domain of normal incidence VUV spectrometers (~500 Å) which is roughly the domain of laboratory continuum light sources (~600 Å) and of He I photoelectron spectroscopy (584 Å). Photoionization experiments in this region began In earnest about 30 years ago. These experiments progressed from measurements of absolute cross sections to photoionization mass spectrometry and photoelectron spectroscopy, and later to photoion-photoelectron coincidence and photoelectron angular distribution measurement.(1–4) They have been supplemented by fluorescence studies and even coincidence measurements involving fluorescence and ionization.5,6 Various types of partial cross sections can be extracted from these measurements. At the present time, a large body of data has accumulated, primarily on atoms and molecules which are stable, and can be readily introduced as gases into a photoionization apparatus. Investigations of the more difficult species, which are chemically reactive, unstable, explosive, or involatile, have been performed primarily in the recent decade. Some of these molecules or radicals have gained recent interest because of their occurrence in the atmosphere or interstellar media. It is the purpose of this chapter to focus on these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Berkowitz, Photoabsorption, Photoionization and Photoelectron Spectroscopy (Academic Press, New York, 1979).

    Google Scholar 

  2. Vacuum Ultraviolet Photoionization and Photodissociatìon of Molecules and Clusters, edited by C. Y. Ng (World Scientific, Singapore, 1991).

    Google Scholar 

  3. Synchrotron Radiation and Dynamic Phenomena, edited by J. A. Beswick, AIP Conference Proceedings 258 (American Institute of Physics, New York, 1992).

    Google Scholar 

  4. I. Nenner and J. A. Beswick, in Handbook on Synchrotron Radiation, Vol. 2, edited by G. V. Marr (North-Holland, Amsterdam, 1987).

    Google Scholar 

  5. E. Poliakoff, in Vacuum Ultraviolet Photoionization and Photodissociation of Molecules and Clusters, edited by C. Y. Ng (World Scientific, Singapore, 1991), pp. 345–377.

    Google Scholar 

  6. J. H. D. Eland, M. Devoret, and S. Leach, Chem. Phys. Lett. 43, 97 (1976)

    ADS  Google Scholar 

  7. G. Dujardin, S. Leach, and G. Taieb, Chem. Phys. 46, 407 (1980)

    Google Scholar 

  8. R. P. Tuckett, E. Catellucci, M. Bonneau, G. Dujardin, and S. Leach, Chem. Phys. 92, 43 (1985).

    Google Scholar 

  9. H. Rottke and K. H. Welge, Chem. Phys. Lett. 99, 456 (1983)

    ADS  Google Scholar 

  10. D. J. Hart and J. W. Hepburn, Chem. Phys. 129, 51 (1989)

    ADS  Google Scholar 

  11. H. H. Fielding, T. P. Softley, and F. Merkt, Chem. Phys. 155, 257 (1991)

    Google Scholar 

  12. R Merkt and T. P. Softley, J. Chem. Phys. 96, 4149 (1992).

    ADS  Google Scholar 

  13. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, J. Phys. Chem. Ref Data 11, Suppl. 2 (1982).

    Google Scholar 

  14. J. M. Nicovrch, K. D. Kreutter, C. J. Shackelford, and P. H. Wine, Chem. Phys. Lett. 179, 367 (1991).

    ADS  Google Scholar 

  15. Gmelins Handbuch der Anorganischen Chemie, Chlor, Ergänzungsband, Teil B, Lieferung 2 (Verlag Chemie, Weinheim, 1969).

    Google Scholar 

  16. A. Arkell and I. Schwager, J. Am. Chem. Soc. 89, 5999 (1967).

    Google Scholar 

  17. A. Wahner, G. S. Tyndall, and A. R. Ravishankara, J. Phys. Chem. 91, 2734 (1987).

    Google Scholar 

  18. V. Vaida, S. Solomon, E. C. Richard, E. RŪhl, and A. Jefferson, Nature 342, 405 (1989).

    ADS  Google Scholar 

  19. A. J. Hills, R. J. Cicerone, J. C. Calvert, and J. W. Birks, J. Phys. Chem. 92, 1853 (1988).

    Google Scholar 

  20. R. I. Derby and W S. Hutchinson, Inorg. Synth. 4, 152 (1953).

    Google Scholar 

  21. R. A. Cox and G D. Hayman, Nature 332, 796 (1988).

    ADS  Google Scholar 

  22. E. C. Richard and V. Vaida, J. Chem. Phys. 94, 153 (1991); 94, 163 (1991).

    ADS  Google Scholar 

  23. W. G. Lawrence, K. C. Clemitshaw, and V. A. Apkarian, J. Geophys. Res. 95, 18591 (1990).

    ADS  Google Scholar 

  24. E. RŪhl, A. Jefferson and V. Vaida, J. Phys. Chem. 94, 2990 (1990).

    Google Scholar 

  25. E. Bishenden, J. Haddock, and D. J. Donaldson, J. Phys. Chem. 95, 2113 (1991).

    Google Scholar 

  26. K. A. Peterson and H.-J. Werner, J. Chem. Phys. 96, 8948 (1992).

    ADS  Google Scholar 

  27. V. Vaida, E. C. Richard, A. Jefferson, L. A. Cooper, R. Flesch, and E. RŪhl, Ber. Bunsenges. Phys. Chem. 96, 391 (1992).

    Google Scholar 

  28. H. F. Davis and Y. T. Lee, J. Phys. Chem. 96, 5681 (1992).

    Google Scholar 

  29. C. M. Humphries, A. D. Walsh, and P. A. Warsop, Discuss. Faraday. Soc. 35, 137 (1963).

    Google Scholar 

  30. N. Basco and R. D. Morse, Proc. R. Soc. London Ser. A 336, 495 (1974).

    ADS  Google Scholar 

  31. R. Flesch, El RŪhl, K Hottmann, and H. BaumgĀrtel, J. Phys. Chem. 97, 837 (1993).

    Google Scholar 

  32. C. Y. R. Wu and D. L Jlge J. Chem. Phys. 74, 3804 (1981)/

    ADS  Google Scholar 

  33. A. B. Cornford, D. C. Frost, E C. Herring, and C. A. McDowell, Chem. Phys. Lett. 10, 345 (1971); Discuss. Faraday Soc. 54, 56 (1972).

    ADS  Google Scholar 

  34. J. B. Coon and E. Oritz, J. Mol Spectrosc. 1, 495 (1957).

    Google Scholar 

  35. K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, and S. Iwata, Handbook of Photoelectron Spectra of Fundamental Organic Molecules (Japan Scientific Society, Tokyo, 1981).

    Google Scholar 

  36. L. S. Cederbaum, W. Domcke, W. von Niessen, and W. P. Kraemer, Mol Phys. 34, 381 (1977).

    ADS  Google Scholar 

  37. K. P. Huber and G. Herzberg, Molecular Spectra and Molecuiar Structure. IV. Constants of Diatomic Molecules (Van Nostrand-Reinhold, Princeton, NJ, 1979).

    Google Scholar 

  38. D. K. Bulgin, J. M. Dyke, N. Jonathan, and A. Morris, Mol Phys. 32, 1487 (1976); J. Chem. Soc. Faraday Trans. 2 75, 456(1978).

    ADS  Google Scholar 

  39. S. G. Lias, J. E. Bartmess, J. F. Liebman, J. H. Holmes, R. D. Levin, and W. G. Mallard, J. Phys. Chem. Ref Data 17, Suppl. 1 (1988).

    Google Scholar 

  40. U. Rockland, H. Baumgärtel, E. Rühl, O. Lösking, H. S. R Müller, and H. Willner, Ber. Bunsenges. Phys. Chem., (to be published).

    Google Scholar 

  41. J. L. Gole, J. Phys. Chem. 84, 1333 (1980).

    Google Scholar 

  42. K. A. Peterson and H. J. Werner, (to be published).

    Google Scholar 

  43. V. H. Dibeler, J. A. Walker, and H. M. Rosenstock, J. Res. NBS70A, 459 (1966).

    Google Scholar 

  44. M. J. Weiss and G. M. Lawrence, J. Chem. Phys. 53, 214 (1970).

    ADS  Google Scholar 

  45. P. J. Bassett and D. R. Lloyd, Chem. Phys. Lett. 6, 166 (1970).

    ADS  Google Scholar 

  46. V. H. Dibeler and J. A. Walker, Inorg. Chem. 8, 1728 (1969).

    Google Scholar 

  47. P. I. Mansell, C. J. Danby, and I. Powis, J. Chem. Soc. Faraday Trans. 2 77, 1449 (1981).

    Google Scholar 

  48. E. A. Lawton and J. Q. Weber, J. Am. Chem. Soc. 85, 3595 (1963).

    Google Scholar 

  49. A. V. Pankratov, A. N. Zercheninov, V. I. Chesnokov, and N. N. Zhdanova, Russ, J. Phys. Chem. (Engl. Transl.) 43, 212 (1969).

    Google Scholar 

  50. R. Minkwitz, A. Liedke, and R. Nass, J. Fluorine Chem. 35, 307 (1987).

    Google Scholar 

  51. H. Baumgärtel, H.-W. Jochims, E. Rühl, H. Bock, R. Dammel, R. Minkwitz, and R. Nass, Inorg. Chem. 28, 943 (1989).

    Google Scholar 

  52. H. Bock and B. Solouki, Angew. Chem. 93, 425 (1983).

    Google Scholar 

  53. M. B. Robin, The Higher Excited States of Polyatomic Molecules, Vols. 1–3 (Academic Press, New York, 1974, 1975, 1985).

    Google Scholar 

  54. M. B. Robin, I. Ishii, R. McLaren, and A. R Hitchock, J. Electron Spectrasc. 47, 53 (1988).

    Google Scholar 

  55. K. Wittel and H. Bock, in The Chemistry of Functional Groups, edited by S. Patai and Z. Rappoport (Wiley, New York, 1983).

    Google Scholar 

  56. A. Schmiedekamp, S. Skaarup, P. Pulay, and J. E. Boggs, J. Chem. Phys. 66, 5769 (1977).

    ADS  Google Scholar 

  57. J. D. Swalen and J. A. Ibers, J. Chem. Phys. 36, 1914 (1962).

    ADS  Google Scholar 

  58. D. Colbourne, D. C. Frost, C. A. McDowell, and N. P. C. Westwood, Chem. Phys. Lett. 72, 247 (1980).

    ADS  Google Scholar 

  59. H. Halim, B. Ciommer, and H. Schwarz, Angew. Chem. 94, 547 (1982)

    Google Scholar 

  60. L. Radom, W. J. Bouma, R. H. Nobes, and B. F. Yates, Pure Appl. Chem. 56, 1831 (1984).

    Google Scholar 

  61. J. Berkovvitz, J. P. Greene, J. Foropoulos, Jr, and O. M. Neskoviċ, J. Chem. Phys. 81, 6166 (1984).

    ADS  Google Scholar 

  62. K. Wittel and H. Bock, Chem. Ber. 107, 317 (1974).

    Google Scholar 

  63. D. Reinke, Ph.D. Thesis, DESY F41-73/6, Hamburg (1973).

    Google Scholar 

  64. R. Kaufel, Ph.D. Thesis, Freie Universität Berlin, Berlin (1985).

    Google Scholar 

  65. D. P. Stevenson, Discuss. Faraday Soc. 10, 35 (1951).

    Google Scholar 

  66. E. Rühl, H.-W. Jochims, and H. Baumgärtel, Can. J. Chem. 63, 1949 (1985).

    Google Scholar 

  67. E. Rühl, Diploma Thesis, Freie Universität Berlin, Berlin (1983).

    Google Scholar 

  68. G. Frenking, W. Koch, M. Schaale, and H. Baumgärtel, Int. J. Mass Spectrom. Ion Proc. 61, 305 (1984).

    Google Scholar 

  69. H.-W. Jochims, W. Lohr, and H. Baumgärtel, Nouv. J. Chim 3, 109 (1979).

    Google Scholar 

  70. J. L. Franklin, J G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 26, Washington, DC (1969).

    Google Scholar 

  71. G. Kauschka and L. Kodlitz, Z. Chem. 16, 377 (1976).

    Google Scholar 

  72. R. M. Joshi, J. Macromol. Sci. Chem. A4, 1819 (1970); A5, 687 (1971); A8, 861 (1974).

    Google Scholar 

  73. H. M. Rosenstock, K. Draxl, B. W. Steiner, and J. T. Herron, J. Phys. Chem. Ref. Data 6, Suppl. 1 (1977).

    Google Scholar 

  74. R Kaufel and H. Baumgärtel, unpublished work.

    Google Scholar 

  75. R. K. Yoo, B. Rusčić, and J. Berkowitz, Chem. Phys. 166, 215 (1992).

    Google Scholar 

  76. J. Berkowitz and B. Rusčić, in Vacuum Ultraviolet Photoionization and Photodissociatìon of Molecules and Clusters (World Scientific, Singapore, 1991), pp. 1–41.

    Google Scholar 

  77. S. Nourbakhsh, K. Norwood, G.-Z. He, and C. Y. Ng, J. Am. Chem. Soc. 113, 6311 (1991).

    Google Scholar 

  78. J. Berkowitz and H. Cho, J. Chem. Phys. 90, 1 (1989).

    ADS  Google Scholar 

  79. J. Berkowitz, I. R Greene, H. Cho, and G. L. Goodman, J. Phys. B 20, 2647 (1987).

    ADS  Google Scholar 

  80. J. Berkowitz, I. P. Greene, H. Cho, and B. Rusčić, J Chem. Phys. 86, 1235 (1987).

    ADS  Google Scholar 

  81. J. Berkowitz, C. H. Batson, and G. L. Goodman, Phys. Rev. A 24, 149 (1981).

    ADS  Google Scholar 

  82. J. Berkowitz, Adv. Chem. Phys. LXXII, 1 (1988).

    Google Scholar 

  83. U. Fano, Phys. Rev. 124, 1866(1961).

    ADS  MATH  Google Scholar 

  84. J. Berkowitz, B. Rusčić, and R. K. Yoo, Comments on Atomic and Molecular Physics, 28, 95 (1992).

    Google Scholar 

  85. ML Y. Amusia, Proc. of the 8th Intl. Conf. on the Physics of Electronic and Atomic Collisions, Belgrade, Yugoslavia (1973). Invited Lectures and Progress Reports, edited by B. C. Cobic and M. V. Kurepa (Institute of Physics, Belgrade, Yugoslavia, 1973); p. 172.

    Google Scholar 

  86. W. A. Goddard III and L. B. Harding, Annu. Rev. Phys. Chem. 29, 363 (1978).

    ADS  Google Scholar 

  87. J. Berkowitz, J. Chem. Phys. 89, 7065 (1988).

    ADS  Google Scholar 

  88. S. T. Gibson, J. P. Greene, and J. Berkowitz, J. Chem. Phys. 83, 4319 (1985).

    ADS  Google Scholar 

  89. S. J. Dunlavey, J. M. Dyke, N. Jonathan, and A. Morris, Mol. Phys. 39, 1121 (1980).

    ADS  Google Scholar 

  90. J. M. Dyke, N. Jonathan, A. E. Lewis, and A. Morris, J. Chem. Soc. Faraday Trans. 2 78, 1445 (1982).

    Google Scholar 

  91. J. M. Dyke, N. Jonathan, and A. Morris, Int. Rev. Phys. Chem. 2, 3 (1982).

    Google Scholar 

  92. See, for example, J. Berkowitz, Photoabsorption, Photoionization and Photoelectron Spectroscopy (Academic Press, New York, 1979), p. 275.

    Google Scholar 

  93. G. Herzberg and J. Shoosmith, Can. J. Phys. 34, 523 (1956).

    ADS  Google Scholar 

  94. G. Herzberg, Can. J. Phys. 39, 1511 (1961).

    ADS  Google Scholar 

  95. G. Herzberg and J. W. C. Johns, Astrophys. J. 158, 399 (1969).

    ADS  Google Scholar 

  96. A. W. Potts and W. C. Price, Proc. R. Soc. London Ser. A 326, 165 (1972).

    ADS  Google Scholar 

  97. B. Rusčić, M. Schwarz, and J. Berkowitz, J. Chem. Phys. 92, 1865 (1990).

    ADS  Google Scholar 

  98. J. A. Pople and L. A. Curtiss, J. Phys. Chem. 91, 155 (1987).

    Google Scholar 

  99. T. Kudo and S. Nagase, Chem. Phys. Lett. 148, 73 (1988).

    ADS  Google Scholar 

  100. J. M. Dyke, N. Jonathan, A. Morris, A. Ridha, and M. J. Winter, Chem. Phys. 81, 481 (1983).

    Google Scholar 

  101. R. D. Johnson III, B. P. Tsai, and J. W. Hudgens, J. Chem. Phys. 91, 3340 (1989).

    ADS  Google Scholar 

  102. K. Balasubramanian and A. D. McLean, J. Chem. Phys. 85, 5117 (1986).

    ADS  Google Scholar 

  103. C. W. Bauschlicher, Jr, S. R. Langhoff, and P. R. Taylor, J. Chem. Phys. 87, 387 (1987).

    ADS  Google Scholar 

  104. L. A. Curtiss and J. A. Pople, Chem. Phys. Lett. 144, 38 (1988).

    ADS  Google Scholar 

  105. B. Rusčić and J. Berkowitz, J. Chem. Phys. 95, 2407 (1991).

    ADS  Google Scholar 

  106. J. S. Binkley, J. Am. Chem. Soc. 106, 603 (1984).

    Google Scholar 

  107. B.T. Colegrove and H. F. Schaefer III, J. Phys. Chem. 94, 5593 (1990).

    Google Scholar 

  108. L. A. Curtiss, K. Raghavachari, P. W. Deutsch, and J. A. Pople, J. Chem. Phys. 95, 2433 (1991).

    ADS  Google Scholar 

  109. M. Bogey, H. Bolvin, C. Demuynck, and J. L. Destombes, Phys. Rev. Lett. 66, 413 (1991).

    ADS  Google Scholar 

  110. B. Rusčić and J. Berkowitz, J. Chem. Phys. 95, 2407 (1991).

    ADS  Google Scholar 

  111. S. R. Gunn and L. G. Green, J. Phys. Chem. 65, 779 (1961).

    Google Scholar 

  112. J. A. Seetula, Y. Feng, D. Gutman, P. W. Seakins, and M. J. Pilling, J. Phys. Chem. 95, 1658 (1991).

    Google Scholar 

  113. A. F. Sax and J. Kalcher, J: Phys. Chem. 95, 1768 (1991).

    Google Scholar 

  114. B. T. Colegrove and H. F. Schaefer III, J. Chem. Phys. 93, 7230 (1990).

    ADS  Google Scholar 

  115. R. S. Grev, B. J. DeLeeuw, and H. F. Schaefer III, Chem. Phys. Lett. 165, 257 (1990).

    ADS  Google Scholar 

  116. J. M. Dyke, A. R. Ellis, N. Jonathan, N. Keddar, and A. Morris, Chem. Phys. Lett. 111, 207 (1984).

    ADS  Google Scholar 

  117. J. M. Dyke, J. Chem. Soc. Faraday Trans. 2 83, 69 (1987).

    Google Scholar 

  118. B. Rusčić and J. Berkowitz, J. Chem. Phys. 95, 4033 (1991).

    ADS  Google Scholar 

  119. W J. Bouma, R. H. Nobes, and L. Radom, Org. Mass Spectrom. 17, 315 (1982).

    Google Scholar 

  120. M. R. Manaa and D. R. Yarkony, J. Am. Chem. Soc. 116, 11444 (1994).

    Google Scholar 

  121. J. M. Dyke, private communication.

    Google Scholar 

  122. P. C. Burgers and J. L. Holmes, Org. Mass Spectrom. 19, 452 (1984).

    Google Scholar 

  123. E. E. Ferguson, J. Roncin, and L. Bonazzola, Int. J. Mass Spectrom. Ion Proc. 79, 215 (1987).

    Google Scholar 

  124. J. M. Nicovich, K. D. Kreutter, C. A. van Dijk, and R H. Wine, J. Phys. Chem. 96, 2518 (1992).

    Google Scholar 

  125. B. Rusčić and J. Berkowitz, J. Chem. Phys. 97, 1818 (1992).

    ADS  Google Scholar 

  126. R. E. Kutina, A. K. Edwards, G. L. Goodman, and J. Berkowitz, J. Chem. Phys. 77, 5508(1982). Although it was not clear at that time whether CH2SH+ or CH3S+ was more stable, the experimental threshold for mass 47 from CH3SH is determined accurately, and is currently to be interpreted as CH2SH+.

    ADS  Google Scholar 

  127. S. Nourbakhsh, K. Norwood, H.-M. Yin, C.-L. Liao, and C. Y. Ng, J. Chem. Phys. 95, 946 (1991).

    ADS  Google Scholar 

  128. H. M. Rosenstock, J. Dannacher, and I F. Liebman, Radial Phys. Chem. 20, 7 (1982).

    ADS  Google Scholar 

  129. T. Baer, G. D. Willett, D. Smith, and J. S. Phillips, J. Chem. Phys. 70, 4076 (1979).

    ADS  Google Scholar 

  130. O. Braitbart, S. Tobita, S. Leach, P. Roy, and I. Nenner, in Synchrotron Radiation and Dynamic Phenomena, edited by J. A. Beswick, AIP Conference Proceedings 258 (American Institute of Physics, New York, 1992), pp. 42–52.

    Google Scholar 

  131. J. H. Beynon, R. M. Caprioli, W. O. Perry, and W. E. Baitinger, J. Am. Chem. Soc. 94, 6828 (1972).

    Google Scholar 

  132. B. Andlauer and C. Ottinger, J. Chem. Phys. 55, 1471 (1971); Z Naturforsch. 27a, 293 (1972).

    ADS  Google Scholar 

  133. H. Kühlewind, A. Kiermeier, and H. J. Neusser, J. Chem. Phys. 85, 4427 (1986).

    ADS  Google Scholar 

  134. O. Braitbart, E. Castellucci, G. Dujardin, and S. Leach, J. Phys. Chem. 87, 4799 (1983).

    Google Scholar 

  135. N. Ohmichi, Y. Malinovich, J. P. Ziesel, and C. Lifshitz, J. Phys. Chem. 93, 2491 (1989).

    Google Scholar 

  136. C. Lifshitz and N. Ohmichi, J. Phys. Chem. 93, 6329 (1989).

    Google Scholar 

  137. R. E. Krailler, D. H. Russell, M. F. Jarrold, and M. T. Bowers, J. Am. Chem. Soc. 107, 2346 (1985).

    Google Scholar 

  138. A. Léger and J. L. Puget, Astron. Astrophys. 137, L5 (1984)

    ADS  Google Scholar 

  139. A. Léger and L. D’hendecourt, Astron. Astrophys. 146, 81 (1985).

    ADS  Google Scholar 

  140. A. Léger et al. (Eds.), Polycyclic Aromatic Hydrocarbons and Astrophysics (Reidel, Dordrecht, 1987).

    Google Scholar 

  141. L. J. Allamandola, A. G. G. M. Tielens, and J. R. Barker, Astrophys. J. 290, L25 (1985).

    ADS  Google Scholar 

  142. W. W. Duley and A. P. Jones, Astrophys. J. 351, L49 (1990).

    ADS  Google Scholar 

  143. E. Rühl, S. D. Price, and S. Leach, J. Phys. Chem. 93, 6312 (1989).

    Google Scholar 

  144. H. W. Jochims, H. Rasekh, E. Rühl, H. Baumgärtel, and S. Leach, J. Phys. Chem. 97, 1312 (1993).

    Google Scholar 

  145. H. W. Jochims, H. Rasekh, E. Rühl, H. Baumgärtel, and S. Leach, Chem. Phys. 168, 159 (1992).

    Google Scholar 

  146. M. Richard-Viard, These d’Etat, Université de Paris-Sud, Paris (1988).

    Google Scholar 

  147. R. J. van Brunt and M. E. Wacks, J. Chem. Phys. 41, 3195 (1964).

    ADS  Google Scholar 

  148. H. Kühlewind, A. Kiermeier, H. J. Neusser, and E. W. Schlag, J. Chem. Phys. 87, 6488 (1987).

    ADS  Google Scholar 

  149. T. Baer, O. Dutuit, H. Mestdagh, and C. Rolando, J. Phys. Chem. 92, 5674 (1988).

    Google Scholar 

  150. L. T. Scott and M. A. Kirms, J. Am. Chem. Soc. 103, 5875 (1981).

    Google Scholar 

  151. J. Becker, C. Wentrup, E. Katz, and K.-P. Zeller, J. Am. Chem. Soc. 102, 5112 (1980).

    Google Scholar 

  152. M. J. S. Dewar and K. M. Merz, Jr, J. Am. Chem. Soc. 108, 5142 (1986).

    Google Scholar 

  153. H. W. Jochims, E. Biller, H. Baumgärtel, and S. Leach, (to be published).

    Google Scholar 

  154. E. Stenhagen, S. Abrahamson, and F. W. McLafferty, Registry of Mass Spectral Data, Vol. 1 (Wiley, New York, 1974).

    Google Scholar 

  155. B. P. Tsai and I. H. D. Eland, Int. J. Mass Spectrom. Ion Phys. 36, 143 (1980).

    Google Scholar 

  156. H. Steger, J. de Vries, B. Kamke, W. Kamke, and T. Drewello, Chem. Phys. Lett. 194, 452 (1992).

    ADS  Google Scholar 

  157. E. Rühl, C. Schmale, H. C. Schmelz, and H. Baumgärtel, Chem. Phys. Lett. 191, 430 (1992).

    ADS  Google Scholar 

  158. H. W. Biester, M. J. Besnard, G. Dujardin, L. Hellner, and E. E. Koch, Phys. Rev. Lett. 59, 1277 (1987).

    ADS  Google Scholar 

  159. S. Leach, in Interstellar Dust, /AU/35, edited by L. Allamandola and A. G. G. M. Tielens (Kluwer, Amsterdam, 1989).

    Google Scholar 

  160. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).

    ADS  Google Scholar 

  161. R. K. Yoo, B. Rusčić, and J. Berkowitz, J. Chem. Phys. 96, 911 (1992).

    ADS  Google Scholar 

  162. D. L. Lichtenberger, K. W. Nebesny, C. D. Ray, D. R. Huffman, and L. D. Lamb, Chem. Phys. Lett. 176, 203 (1991).

    ADS  Google Scholar 

  163. J. A. Zimmerman, J. R. Eyler, S. B. H. Bach, and S. W. McElvany, J. Chem. Phys. 94, 3556 (1991).

    ADS  Google Scholar 

  164. R. E. Stanton and M. D. Newton, J. Phys. Chem. 92, 2141 (1988).

    Google Scholar 

  165. I. V. Hertel, H. Steger, J. de Vries, B. Weisser, C. Menzel, B. Kamke, and W. Kamke, Phys. Rev. Lett. 68, 784 (1992).

    ADS  Google Scholar 

  166. G. F. Bertsch, A. Bulgac, D. Tománek, and Y. Wang, Phys. Rev. Lett. 67, 2690 (1991).

    ADS  Google Scholar 

  167. S. Petrie, G. Javahery, J. Wang, and D. K. Bohme, J. Phys. Chem. 96, 6121 (1992).

    Google Scholar 

  168. S. W. McElvany and S. B. H. Bach, A.S.M.S. Mass Spectrom. Allied Top. 39, 422 (1991)

    Google Scholar 

  169. S. W. McElvany, M. M. Ross, and J. H. Callahan, Proc. Matter Res. Soc. Symp. 206, 697 (1991).

    Google Scholar 

  170. C. Lifshitz, M. Iraqi, T. Peres, and J. E. Fischer, Rapid Commun. Mass Spectrom. 5, 238 (1991).

    Google Scholar 

  171. P. P. Radi, M.-T. Hsu, M. E. Rincon, P. R. Kemper, and M. T. Bowers, Chem. Phys. Lett. 174, 223 (1990).

    ADS  Google Scholar 

  172. P. Sandler, C. Lifshitz, and C. E. Klots, Chem. Phys. Lett. 200, 445 (4992).

    Google Scholar 

  173. P. Wurz and K. R. Lykke, J. Phys. Chem. 96, 10129 (1992).

    Google Scholar 

  174. R. C. Mowrey, D. W. Brenner, B. I Dunlap, J. W. Mintmire, and C. X White, J. Phys. Chem. 95, 7138 (1991).

    Google Scholar 

  175. R. D. Beck, R St, John, M. M. Alvarez, F. Diederich, and R. L. Whetten, J. Phys. Chem. 95, 8402 (1991).

    Google Scholar 

  176. R. E. Stanton, J. Phys. Chem. 96, 111 (1992).

    Google Scholar 

  177. J.-Y. Yi and J. Bernholc, J. Chem. Phys. 96, 8634 (1992).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Berkowitz, J., Rühl, E., BaumgÄrtel, H. (1996). Valence Ionization Processes in the VUV Region. In: Becker, U., Shirley, D.A. (eds) VUV and Soft X-Ray Photoionization. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0315-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0315-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7993-5

  • Online ISBN: 978-1-4613-0315-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics