Skip to main content

Coincidence Measurements on Ions and Electrons

  • Chapter
VUV and Soft X-Ray Photoionization

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

Coincidence methods are among the most powerful tools in physics for experiments at the microscopic level, because they select for study single events of reaction by individual atoms or molecules. Coincidence detection of at least two products is essentiai for complete characterization of any process that produces three or more particles, such as double ionization; it also allows particular processes to be studied selectively in experimental situations where events of many different types happen concurrently. Ionization processes, for example, often produce both electrons and ions of many different energies; a coincidence experiment makes it possible to examine the ions that are formed together with electrons of a single chosen energy. The electron and the ion from one event arrive at their respective detectors at different times after their formation, and although the signals at the detectors are not simultaneous (coincident in the normal dictionary sense) they do have a definite temporal relationship. All coincidence experiments involve the search for time-correlated signals such as these from the arrivals of single particles at suitable detectors. Electrons and ions are particularly easy to detect as single particles, but photons and high-energy neutral atoms or molecules can be detected in coincidence too. The majority of experiments in atomic and molecular physics involve coincidences between just two particles, and are called twofold coincidence techniques; triple (three-fold) and higher-order coincidence techniques are in use, but are considerabty more dificult. As primary exciting particles, photons rather than electrons have a distinct advantage; because they are absorbed, not scattered, the total count of final particles is reduced by one for the same final state of the target. They also have precisely controllable energy and polarization, which are highly advantageous in many experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abed, M. Broyer, M. Carrė, M. L. Gaillard, and M. Larzilliėre, Phys. Rev. Lett. 49, 120 (1982).

    Article  ADS  Google Scholar 

  2. M. Y. Amusia, I. S. Lee, and V. A. Kilin, Phys. Rev. A 45, 4576 (1992).

    Article  ADS  Google Scholar 

  3. T. Baer, W. B. Peatman, and E. W. Schlag, Chem. Phys. Lett. 4, 243 (1969).

    Article  ADS  Google Scholar 

  4. T. Baer, R M. Guyon, I. Nenner, A. Tabche-Fouhaille, R. Botter, L. F. A. Ferreira, and T. R. Govers, J. Chem. Phys. 70, 1585 (1979).

    Article  ADS  Google Scholar 

  5. T. Baer, J. Booze, and K.-M. Weitzel, in Vacuum Ultraviolet Photoionization and Photodissociation of Molecules and Clusters, edited by C. Y. Ng (World Scientific, Singapore, 1991), p. 259.

    Chapter  Google Scholar 

  6. U. Becker, O. Hemmers, B. Langer, A. Menzel, and R. Wehlitz, Phys. Rev. A 45, R1295 (1992).

    Article  ADS  Google Scholar 

  7. U. Becker, T. Prischer, E. Schmidt, B. Sonnatag, and H.-E. Wetzel, Phys. Rev. A 33, 3867 (1986).

    Article  Google Scholar 

  8. J. Berakdar and H. Klar, Phys. Ren Lett. 69, 1175 (1992).

    Article  ADS  Google Scholar 

  9. E. G. Berezhko and N. M. Kabachnik, J. Phys. B 12, 2993 (1979).

    Article  ADS  Google Scholar 

  10. M. J. Besnard, L. Hellner, Y. Malinovich, and G. Dujardin, J. Chem. Phys. 85, 1316 (1986).

    Article  ADS  Google Scholar 

  11. B. Brehm and E. von Puttkamer, Adv. Mass Spectrom. 4, 591 (1967).

    Google Scholar 

  12. B. Brehm, R. Frey, A. Küstler, and J. H. D. Eland, Int. J. Mass Spectrom. Ion Phys. 13, 251 (1974).

    Article  Google Scholar 

  13. M. A. Chaudry, A. J. Duncan, R. Hippler, and H. Kleinpoppen, Phys. Rev. Lett. 59, 2036 (1987).

    Article  ADS  Google Scholar 

  14. D. M. Curtis and J H. D. Eland, Int. J. Mass Spectrom. Ion Proc. 63, 241 (1985).

    Article  Google Scholar 

  15. J. L. Dehmer and D. Dill, Phys. Rev. A 18, 164 (1978).

    Article  ADS  Google Scholar 

  16. G. Dujardin, S. Leach, O. Dutuit, P. M. Guyon, and M. Richard-Viard, Chem. Phys. 88, 339 (1984).

    Article  Google Scholar 

  17. C. Dupré, A. Lahmann-Bennani, and A. Duguet, Meas. ScL Technol. 2, 327 (1991).

    Article  ADS  Google Scholar 

  18. W. Eberhardt, Phys. Scr. T 17, 28 (1987).

    Article  ADS  Google Scholar 

  19. W. Eberhardt, E. W. Plummer, L W. Lyo, R. Reininger, R. Carr, W. K. Ford, and D. Sondericker, Aust. J. Phys. 39, 633 (1986).

    ADS  Google Scholar 

  20. J. H. D. Eland, Int. J. Mass Spectrom: Ion Phys. 8, 143 (1972).

    Article  Google Scholar 

  21. J. H. D. Eland, Int. J. Mass Spectrom. Ion Phys. 12, 389 (1973).

    Article  Google Scholar 

  22. J. H. D. Eland, Mol. Phys. 61, 725 (1987).

    Article  ADS  Google Scholar 

  23. J. H. D. Eland, AIP Conf. Proc. 215, 549 (1990).

    Article  ADS  Google Scholar 

  24. J. H. D. Eland, in Vacuum Ultraviolet Photoionization and Photodissociation of Molecules and Clusters, edited by C. Y. Ng (World Scientific, Singapore, 1991), p. 297.

    Chapter  Google Scholar 

  25. J. H. D. Eland, Laser Chem. 11, 259 (1991).

    Article  Google Scholar 

  26. J. H. D. Eland and B. J. Treves-Brown, AIP Conf. Proc. 258, 100 (1992).

    Article  ADS  Google Scholar 

  27. J. H. D. Eland, M. Devoret, and S. Leach, Chem. Phys. Lett. 43, 97 (1976).

    Article  ADS  Google Scholar 

  28. J. H. D. Eland and D. A. Hagan, Int. J. Mass Spectrom. Ion Proc. 100, 489 (1990).

    Article  ADS  Google Scholar 

  29. J. H. D. Eland and D. Mathur, Rapid Commun. Mass Spectrom. 5, 475 (1991).

    Article  Google Scholar 

  30. J. H. D. Eland, F S. Wort, and R. N. Royds, J. Electron Spectrosc. Relat. Phenom. 41, 297 (1986).

    Article  Google Scholar 

  31. J. H. D. Eland, S. D. Price, J. C. Cheney, P. Lablanquie, I. Nenner, and P. G. Fournier, Philos. Trans. R. Soc. London Set: A 324, 247 (1988).

    Article  ADS  Google Scholar 

  32. J. M. Feagin and R. D. Filipczyk, Phys. Rev. Lett. 64, 384 (1990).

    Article  ADS  Google Scholar 

  33. T. Field and J. H. D. Eland, Chem. Phys. Lett. 211, 436 (1993).

    Article  ADS  Google Scholar 

  34. S. Frankel, Phys. Rev. 83, 673 (1951).

    Article  ADS  Google Scholar 

  35. L. J. Frasinski, M. Stankiewicz, K. J. Randall, P. A. Hatherley, and K. Codling, J. Phys. B 19, L819 (1986).

    Article  ADS  Google Scholar 

  36. L. J. Frasinski, M. Stankiewicz, R A. Hatherley and K. Codling, Int. J. Mass Spectrom Ion Proc. 116, 37 (1992).

    Article  Google Scholar 

  37. R. Frey, B. Gotchev, W B. Peatman, H. Pollak, and E. W. Schag, Chem. Phys. Lett. 54, 411 (1978).

    Article  ADS  Google Scholar 

  38. D. A. Hagan and J. H. D. Eland, AIP Conf. Proc. 225, 163 (1990).

    Article  ADS  Google Scholar 

  39. R. I. Hall, A. McConkey, K. Ellis, G. Dawber, M. A. MacDonald, and G. C. King, J. Phys. B 25, 799 (1992).

    Article  ADS  Google Scholar 

  40. R. I. Hall, G. Dawber, A. G. McConkey, M. A. MacDonald, and G. C. King, Z. Phys. D 23, 377 (1992).

    Article  ADS  Google Scholar 

  41. R. I. Hall, K. Ellis, A. McConkey, G. Dawber, L. Avaldl M. A. MacDonald, and G. C. King, J. Phys. B 25, 377 (1992).

    Article  ADS  Google Scholar 

  42. R. I. Hall, G. Dawber, A. McConkey, M. A. MacDonald, and G. C. King, Phys. Rev. Lett. 68, 2751 (1992).

    Article  ADS  Google Scholar 

  43. D. M. Hanson, C. I. Ma, K. Lee, D. Lapiano-Smith, and D. Y. Kim, J. Chem. Phys. 93, 9200 (1990).

    Article  ADS  Google Scholar 

  44. T. Hayaishi, A. Yagishita, E. Shigemasa, E. Murakami, and Y. Morioka, J. Phys. B 23, 4431 (1990).

    Article  ADS  Google Scholar 

  45. A. Huetz, P. Selles, D. Waymel, and J. Mazeeau, J. Phys. 24, 1917 (1991).

    ADS  Google Scholar 

  46. R. E. Imhof, A. Adams, and F. H. Read, J. Phys. E 9, 138 (1976).

    Article  ADS  Google Scholar 

  47. N. M. Kabachnik, J. Phys. B 25, L389 (1992).

    Article  ADS  Google Scholar 

  48. B Kävimerling, B. Krässig, and V. Schmidt, J. Phys. B 25, 3621 (1992).

    Article  ADS  Google Scholar 

  49. B Kämmerling, B. Krässig, and V. Schmidt, J. Phys. B 26, 261 (1993).

    Article  ADS  Google Scholar 

  50. B Kämmerling, B. Krässig, and V. Schmidt, Phys. Rev. Lett. 67, 1848 (1991).

    Article  ADS  Google Scholar 

  51. B Kämmerling and V. Schmidt, J. Phys. B 26, 1141 (1993).

    Article  ADS  Google Scholar 

  52. D. Klapstein and J. P. Maier, Chem. Phys. Lett. 83, 590 (1981).

    Article  ADS  Google Scholar 

  53. H. Klar and M. Fehr, Z Phys. D 23, 295 (1992).

    Article  ADS  Google Scholar 

  54. N. Komiha, Thèse de troisième cycle. University- of Paris. Sud (1981).

    Google Scholar 

  55. H. Kossmann, Meas. Sci. Technol. 4, 16 (1993).

    Article  ADS  Google Scholar 

  56. H. Kossmann, O. Schwarzkopf, B. Kämmerling, and V. Schmidt, Phys. Rev. Lett. 63, 2040 (1989).

    Article  ADS  Google Scholar 

  57. B. Krässig and V. Schmidt, J. Phys. B 25, L327 (1992).

    Article  ADS  Google Scholar 

  58. M. O. Krause M. L. Vestal, W. H. Johnston, and T. A. Carlson, Phys. Rev. 133, A385 (1964).

    Article  ADS  Google Scholar 

  59. P. Lablanquil, J. H. D. Eland, I. Nenner, P. Morin, J. Delwiche, and M. J. Hubin-Franskin, Phys. Rev. Lett. 58, 992 (1987).

    Article  ADS  Google Scholar 

  60. P. Lablanquie, J. Delwiche, M.-J. Hubin-Franskin, I. Nenner, P. Morin, K. Ito, J. H. D. Eland, J. M. Robbe, G. Gandara, J. Fournier, and P. G. Fournier, Phys. Rev. A 40, 5673 (1989).

    Article  ADS  Google Scholar 

  61. M. Lavollée and H. Bergeron, J. Phys. B 25, 3101 (1992).

    Article  ADS  Google Scholar 

  62. J. S. Lawson and H. Frauenfelder, Phys. Rev. 91, 649 (1953).

    Article  ADS  Google Scholar 

  63. T. LeBrun, Doctoral thesis, Université Paris Sud (1991).

    Google Scholar 

  64. J. Lermé, S. Abed, R. A. Holt, M. Larzillière, and M. Carré, J. Chem. Phys. 84, 2167 (1986).

    Article  ADS  Google Scholar 

  65. J. C. Levin, C. Biedermann, N. Keller, L. Liljeby, C.-S. Q. R. T. Short, I. A. Sellin, and D. W. Lindle, Phys. Rev. Lett. 65, 988 (1990)

    Article  ADS  Google Scholar 

  66. J. P. Maier and F. Thommen, Chem. Phys. 51, 319 (1980).

    Article  ADS  Google Scholar 

  67. T. Masuoka and J. A. R. Samson, J. Chim. Phys. 77, 623 (1980).

    Google Scholar 

  68. J. Mazeau, P. Selles, D. Waymel, and A. Huetz, Phys. Rev. Lett. 67, 820 (1991).

    Article  ADS  Google Scholar 

  69. K. E. McCulloh, T. E. Sharp, and H. M. Rosenstock, J. Chem. Phys. 42, 3501 (1965).

    Article  ADS  Google Scholar 

  70. P. Morin, personal communication (1992).

    Google Scholar 

  71. A. J. Murray, B. C. H. Turton, and F. H. Read, Rev. Sci. Instrum. 63, 3346 (1992).

    Article  ADS  Google Scholar 

  72. R. Murphy and W. Eberhardt, J. Chem. Phys. 89, 4054 (1988).

    Article  ADS  Google Scholar 

  73. K. Müller-Dethlefs and E. W. Schlag, Annu. Rev. Phys. Chem. 42, 109 (1991).

    Article  ADS  Google Scholar 

  74. K. Müller-Dethlefs, M. Sander, L. A. Chewter, and E. W. Schlag, J. Phys. Chem. 88, 6098 (1984).

    Article  Google Scholar 

  75. T. Nishimura, G. G. Meisels, and Y. Niwa, J. Chem. Phys. 91, 4009 (1989).

    Article  ADS  Google Scholar 

  76. K. Okuyama, J. H. D. Eland, and K. Kimura, Phys. Rev. A 41, 4930 (1990).

    Article  ADS  Google Scholar 

  77. S. D. Price and J. H. D. Eland, J. Electron. Spectrom. 52, 649 (1990).

    Article  Google Scholar 

  78. S. D. Price and J. H. D. Eland, J. Phys. B 23, 2269 (1990).

    Article  ADS  Google Scholar 

  79. S. D. Price and J. H. D. Eland, J. Phys. B 24, 4379 (1991).

    Article  ADS  Google Scholar 

  80. S. D. Price and J. H. D. Eland, Meas. Sci. Technol. 3, 306 (1992).

    Article  ADS  Google Scholar 

  81. J. Radeloff, N. Buttler, W. Kesternich, and E. Bodenstedt, Nucl. Instrum. Methods 47, 109 (1967).

    Article  ADS  Google Scholar 

  82. E. von Raven, M. Meyer, M. Pahler, and B. Sonntag, J. Electron Spectrom. Relat. Phenom. 52, 677 (1990).

    Article  Google Scholar 

  83. M. Richard-Viard, O. Atabek, O. Dutuit, and P. M. Guyon, J. Chem. Phys. 93, 8881 (1990).

    Article  ADS  Google Scholar 

  84. P. Selles, J. Mazeau, and A. Huetz, J. Phys. B 20, 5183 (1987).

    Article  ADS  Google Scholar 

  85. V. Schmidt, 1992 X. Int. Conf. on VUV Radiat. Phys., Paris, Conference Proceedings, edited by F. J. Wuilleumier, Y. Petroff, and I. Nenner (World Scientific, Singapore, 1993), p. 154.

    Google Scholar 

  86. M. Schnetz, Ph.D. thesis, Universität Freiburg (1992).

    Google Scholar 

  87. O. Schwarzkopf, B. Krässjg, J. Elmiger and V. Schmidt, Phys. Rev. Lett. 70, 3008 (1993).

    Article  ADS  Google Scholar 

  88. A. L. Smith, Philos. Trans. R. Soc. London 268, 169 (1970).

    Article  ADS  Google Scholar 

  89. D. Smith and J. W. Müller, Rev. Sci. ìnstrum. 60, 143 (1989).

    Article  ADS  Google Scholar 

  90. C. E. M. Strauss and P. L. Houston, J. Chem. Phys. 94, 8751 (1990).

    Article  Google Scholar 

  91. M. Völkel and N. Sandner, J. Phys. E 16, 456 (1983).

    Article  ADS  Google Scholar 

  92. L. Vegh and R. L. Becker, Phys. Rev. A 46, 2445 (1992).

    Article  ADS  Google Scholar 

  93. G. H. Wannier, Phys. Rev. 90, 817 (1953).

    Article  ADS  MATH  Google Scholar 

  94. A. H. Wapstra, in Alpha-, Beta- and Gamma-Ray Spectroscopy, Vol. I, edited by K. Siegbahn (North-Holland, Amsterdam, 1966), p. 539.

    Google Scholar 

  95. W. C. Wiley and H. MacLaren, Rev. Sci. ìnstrum. 26, 1150 (1955).

    Article  ADS  Google Scholar 

  96. N. P. Yudin, A. V. Pavlichenkov, and V. G. Neudatchin, Z. Phys. A 320, 565 (1985).

    Article  ADS  Google Scholar 

  97. P. M. Dehmes, J. L. Dehmes, and W. A. Chŭpko, J. Chem. Phys. 73, 126 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Eland, J.H.D., Schmidt, V. (1996). Coincidence Measurements on Ions and Electrons. In: Becker, U., Shirley, D.A. (eds) VUV and Soft X-Ray Photoionization. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0315-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0315-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7993-5

  • Online ISBN: 978-1-4613-0315-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics