Skip to main content
Book cover

Algebra pp 173–220Cite as

Polynomials

  • Chapter

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 211))

Abstract

This chaptser provides a continuation of Chapter II, §3. We prove standard properties of polynomials. Most readers will be acquainted with some of these properties, especially at the beginning for polynomials in one variable. However, one of our purposes is to show that some of these properties also hold over a commutative ring when properly formulated. The Gauss lemma and the reduction criterion for irreducibility will show the importance of working over rings. Chapter IX will give examples of the importance of working over the integers Z themselves to get universal relations. It happens that certain statements of algebra are universally true. To prove them, one proves them first for elements of a polynomial ring over Z, and then one obtains the statement in arbitrary fields (or commutative rings as the case may be) by specialization. The Cayley-Hamilton theorem of Chapter XV, for instance, can be proved in that way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   79.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 65]_B. Birch, S. Chowla, M. Hall, and A. Schinzel, On the difference x 3y 2, Norske Vid. Selsk. Forrh. 38 (1965) pp. 65–69

    MathSciNet  MATH  Google Scholar 

  2. 83]_J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. Wagstaff Jr., Factorization of b n ± 1, b = 2, 3, 5, 6, 7, 10, 11 up to high powers, Contemporary Mathematics Vol. 22, AMS, Providence, RI, 1983

    Google Scholar 

  3. H. Davenport, On f 3(t) − g 2(t), Norske Vid. Selsk. Forrh. 38 (1965) pp. 86–87

    MathSciNet  MATH  Google Scholar 

  4. G. Frey, Links between solutions of AB = C and elliptic curves, Number Theory, Lecture Notes 1380, Springer-Verlag, New York, 1989 pp. 31–62

    Google Scholar 

  5. M. Hall, The diophantine equation x 3y 2 = k, Computers and Number Theory, ed. by A. O. L. Atkin and B. Birch, Academic Press, London 1971 pp. 173–198

    Google Scholar 

  6. S. Lang, Old and new conjectured diophantine inequalities, Bull AMS Vol. 23 No. 1 (1990) pp. 37–75

    Article  MATH  Google Scholar 

  7. R. C. Mason, Equations over function fields, Springer Lecture Notes 1068 (1984), pp. 149–157; in Number Theory, Proceedings of the Noordwijkerhout, 1983

    Google Scholar 

  8. R. C. Mason, Diophantine equations over function fields, London Math. Soc. Lecture Note Series Vol. 96, Cambridge University Press, Cambridge, 1984

    Google Scholar 

  9. R. C. Mason, The hyperelliptic equation over function fields, Math. Proc. Cambridge Philos. Soc. 93 (1983) pp. 219–230

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Silverman, Wieferich’s criterion and the abc conjecture, Journal of Number Theory 30 (1988) pp. 226–237

    Article  MathSciNet  MATH  Google Scholar 

  11. C. L. Stewart and R. Tijdeman, On the Oesterle-Masser Conjecture, Mon. Math. 102 (1986) pp. 251–257

    Article  MathSciNet  MATH  Google Scholar 

Bibliography

  1. M. Artin and B. Mazur, On periodic points, Ann. Math. (2) 81 (1965) pp. 89–99

    MathSciNet  Google Scholar 

  2. M. Atiyah, K-Theory, Addison-Wesley 1991 (reprinted from the Benjamin Lecture Notes, 1967)

    Google Scholar 

  3. W. Fulton and S. Lang, Riemann-Roch Algebra, Springer-Verlag, New York, 1985

    Book  MATH  Google Scholar 

  4. P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978

    MATH  Google Scholar 

  5. R. Gunning, Introduction to Holomorphic Functions of Several Variables, Vol. II: Local Theory, Wadsworth and Brooks/Cole, 1990

    Google Scholar 

  6. 71]_G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford, UK, 1938–1971 (several editions)

    Google Scholar 

  7. 77]_R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977

    Book  MATH  Google Scholar 

  8. F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer-Verlag, New York, 1966 (translated and expanded from the original German, 1956)

    Book  MATH  Google Scholar 

  9. S. Lang, Cyclotomic Fields, I and II, Springer-Verlag, New York, 1990, combined edition of the original editions, 1978, 1980

    Book  MATH  Google Scholar 

  10. A. Manning, Axiom A diffeomorphisms have rational zeta functions, Bull. Lond. Math. Soc. 3 (1971) pp. 215–220

    Article  MathSciNet  MATH  Google Scholar 

  11. J. P. Serre, A Course in Arithmetic, Springer-Verlag, New York, 1973

    Book  MATH  Google Scholar 

  12. M. Shub, Global Stability of Dynamical Systems, Springer-Verlag, New York, 1987

    Book  MATH  Google Scholar 

References

  1. S. Lang, Math Talks for Undergraduates, Springer Verlag 1999

    Google Scholar 

  2. N. Snyder, An alternate proof of Mason’s theorem, Elemente der Math. 55 (2000) pp. 93–94

    Article  MATH  Google Scholar 

  3. _W. Stothers, Polynomial identities and hauptmoduln, Quart J. Math. Oxford (2) 32 (1981) pp. 349–370

    Article  MathSciNet  MATH  Google Scholar 

  4. U. Zannier, On Davenport’s bound for the degree of f 3g 2 and Riemann’s existence theorem, Acta Arithm. LXXI.2 (1995) pp. 107–137

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lang, S. (2002). Polynomials. In: Algebra. Graduate Texts in Mathematics, vol 211. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0041-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0041-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6551-1

  • Online ISBN: 978-1-4613-0041-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics