Skip to main content

Steady States for Streater’s Energy-Transport Models of Self-Gravitating Particles

  • Conference paper

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 135))

Abstract

We review Streater’s energy-transport models which describe the temporal evolution of the density and temperature of a cloud of gravitating particles, coupled to a mean field Poisson equation. In particular we consider the existence of stationary solutions in a bounded domain with given energy and mass. We discuss the influence of the dimension and geometry of the domain on existence results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Bavaud, Equilibrium properties of the Vlasov functional: the generalized Poisson-Boltzmann-Emden equation, Rev. Mod. Phys. 63, no. 1 (1991), 129-148.

    Google Scholar 

  2. P. Biler, J. Dolbeault, M.J. Esteban, and G. Karch, Stationary solutions, intermediate asymptotics and large time behaviour of type II Streater’s models, Adv. Diff. Eq. 6 (2001), 461–480.

    MathSciNet  MATH  Google Scholar 

  3. P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles, III, Colloq. Math. 68 (1995), 229–239.

    MathSciNet  MATH  Google Scholar 

  4. P. Biler, W. Hebiseh, and T. Nadzieja, The Debye system: existence and long time behavior of solutions, Nonlinear Analysis T.M.A. 28 (1994), 1189–1209.

    Article  Google Scholar 

  5. P. Biler, D. Hilhorst, and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitation al interaction of particles, II, Colloq. Math. 67 (1994), 297–308.

    MathSciNet  MATH  Google Scholar 

  6. P. Biler, A. Krzywieki, and T. Nadzieja, Self-interaction of Brownian particles coupled with thermodynamic processes, Rep. Math. Phys. 42 (1998), 359–372.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, Colloq. Math. 66 (1994), 319–334.

    MathSciNet  MATH  Google Scholar 

  8. P. Biler and T. Nadzieja, A nonlocal singular parabolic problem modelling gravitational interaction of particles, Adv. Diff. Eq. 8 (1998), 177–197.

    MathSciNet  Google Scholar 

  9. F. Bouehut and J. Dolbeault, On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Goulombic and Newtonian potentials, Diff. Int. Eq. 8 (1995), 487–514.

    Google Scholar 

  10. S. Chandrasekhar, An Introduction to the Study of Stellar Structure, New York, Dover (1957).

    MATH  Google Scholar 

  11. E. Caglioti, P. L. Lions, C. Marchioro, and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, I & II, Comm. Math. Phys. 143 (1992), 501–525 & 174 (1995), 229–260.

    Article  MathSciNet  MATH  Google Scholar 

  12. S.-Y. A. Chang and P. Yang, Conformal deformation of metrics on S 2, J. Diff. Geom. 27 (1988), 259–296.

    MathSciNet  MATH  Google Scholar 

  13. C.C. Chen and C.S. Lin, Blowup behavior of mean field type equation, Taiwanese J. Math. 4 (2000), 21–31.

    MATH  Google Scholar 

  14. W. Ding, J. Jost, J. Li, and G. Wang, Existence results for mean field equations, Ann. Inst. H. Poincaré, Analyse non linéaire 16 (1999), 653–666.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Dolbeault, Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states), J. Math. Pures Appl. (9) 78 (1999), 121–157.

    MathSciNet  MATH  Google Scholar 

  16. J. Dolbeault and F. Poupaud, A remark on the critical explosion parameter for a semilinear elliptic equation in a generic domain using an explosion time of an ordinary differential equation, Nonlinear Analysis T.M.A. 24 (1995), 1149–1162.

    Article  MathSciNet  MATH  Google Scholar 

  17. G.L. Eyink and H. Spohn, Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence, J. Stat. Phys. 70 (1993), 833–886.

    Article  MathSciNet  MATH  Google Scholar 

  18. Th. Gallouët, F. Mignot, and J.-P. Puel, Quelques résultats sur le problème - Δu = λe u [A few results on the equation - Δu = λe u], C.R. Acad. Sci. Paris Sér. I Math. 307 (1988), 289–292.

    MATH  Google Scholar 

  19. I.M. Gelfand, Some problems in the theory of quasi-linear equations, Amer. Math. Soc. Transl. 29 (1963), 295–381.

    MathSciNet  Google Scholar 

  20. B. Gidas, W.-M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209–243.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. D. Joseph and T. S. Lundgren, Quasilinear problems driven by positive sources, Arch. Rat. Mech. Anal. 49 (1973), 241–269.

    MathSciNet  MATH  Google Scholar 

  22. A. Jüngel, Quasi-hydrodynamic Semiconductor Equations, PNLDE 41, Birkhäuser, Basel, Boston, 2000.

    Google Scholar 

  23. M.K.H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math. 46 (1993), 27–56.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Krzywicki and T. Nadzieja, A note on the Poisson-Boltzmann equation, Zastos. Mat. 21 (1993), 591–595.

    MathSciNet  MATH  Google Scholar 

  25. A. Krzywicki and T. Nadzieja, Steady states for a model of interacting particles, Appl. Math. Lett. 13 (2000), 113–117.

    Article  MathSciNet  MATH  Google Scholar 

  26. P.L. Lions and A. Majda, Equilibrium statistical theory for nearly parallel vortex filaments, Comm. Pure Appl. Math. 53 (2000), 76–142.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Messer and H. Spohn, Statistieal mechanics of the isothermal Lane-Emden equation, J. Stat. Phys. 29 (1982), 561–578.

    Article  MathSciNet  Google Scholar 

  28. F. Mignot and J.-P. Puel, Quelques résultats sur un problème elliptique avec non linéarité exponentielle [Some results on an elliptie problem with exponential nonlinearity], Équations aux dérivées partielles et applications, 683–704, Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris (1998).

    Google Scholar 

  29. T. Nadzieja, A note on nonlocal equations in mathematical physics, “Disordered and Complex Systems”, London - King’s College, July 2000, P. Sollieh et al., ed., AIP Conferenee Proceedings 553, Melville, NY, 2001, 255–259.

    Google Scholar 

  30. T. Nadzieja and A. Raczyński, Radially symmetrie solutions of the Poisson-Boltzmann equation with a given energy, Appl. Math. (Warsaw) 27 (2000), 465–473.

    MathSciNet  MATH  Google Scholar 

  31. K. Nagasaki and T. Suzuki, Radial solutions for Δu + λe u = 0 on annuli in higher dimensions, J. Diff. Eq. 100 (1992), 137–161.

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Onsager, Statistical hydrodynamics, Suppl. Nuovo Cim. (9) 6, no. 2 (1949), 279–287.

    Article  MathSciNet  Google Scholar 

  33. T. Padmanabhan, Statistical mechanics of gravitating systems, Physics Reports 188, no. 5 (1990), 285–362.

    MathSciNet  MATH  Google Scholar 

  34. S.I. Pohozaev, Eigenfunctions of the equation Δu + λf(u) = 0, Soviet Math. Dokl. 5 (1965), 1408.

    Google Scholar 

  35. F. Rellich, Darstellung der Eigenwerte von Δu + λ(u) = 0 durch ein Randintegral, Math. Z. 46 (1940), 635–636.

    Article  MathSciNet  Google Scholar 

  36. C. Rosier, Problème de Cauchy pour une équation parabolique modélisant la relaxation des systèmes stellaires auto-gravitants, C. R. Acad. Sci Paris 332 (2001), 903–908.

    Article  MathSciNet  MATH  Google Scholar 

  37. K. Schmitt, Positive solutions of semilinear elliptic boundary value problems, Topological methods in differential equations and inclusions (Montreal, PQ, 1994), 447–500, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 472, Kluwer Acad. Publ., Dordrecht, 1995.

    Google Scholar 

  38. M. Smoluchowski, Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Phys. Zeit. 17 (1916), 557–571, 585–599.

    Google Scholar 

  39. R.F. Streater, A gas of Brownian particles in stochastic dynamics, J. Stat. Phys. 88 (1997), 447–469.

    Google Scholar 

  40. R.F. Streater, Dynamics of Brownian particles in a potential, J. Math. Phys. 38 (1997), no. 9, 4570–4575.

    Article  MathSciNet  MATH  Google Scholar 

  41. R.F. Streater, Nonlinear heat equations, Rep. Math. Phys. 40 (1997), 557–564.

    Article  MathSciNet  MATH  Google Scholar 

  42. R.F. Streater, The Soret and Dulour effects in statistical dynamics, Proc. R. Soc. London A 456 (2000), 205–211.

    Article  MathSciNet  MATH  Google Scholar 

  43. T. Suzuki, Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity, Ann. Inst. H. Poinearé, Analyse non linéaire 9 (1992), 367–398.

    MATH  Google Scholar 

  44. G. Wolansky, On steady distributions of self-attracting clusters under friction and fiuctuations, Arch. Rat. Mech. Anal. 119 (1992), 355–391.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Biler, P., Dolbeault, J., Esteban, M.J., Markowich, P.A., Nadzieja, T. (2004). Steady States for Streater’s Energy-Transport Models of Self-Gravitating Particles. In: Abdallah, N.B., et al. Transport in Transition Regimes. The IMA Volumes in Mathematics and its Applications, vol 135. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0017-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0017-5_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6507-8

  • Online ISBN: 978-1-4613-0017-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics