Skip to main content

Part of the book series: Undergraduate Texts in Mathematics ((UTM))

  • 1842 Accesses

Abstract

Earlier, we encountered the function τ(n), which gives the number of (positive) divisors of the number n, and we also met Euler’s function ϕ(n). Given the canonical decomposition of n we gave formulas to compute these functions. We also learned some interesting properties of Euler’s function. Al-though the function π(x), which gives the number of primes not exceeding x, is defined for all positive values x, its value can change only at integer values of the argument. Therefore, π(x) can also be viewed as a function whose domain consists of the positive integers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Regarding the Mersenne primes, see, e.g., P. Ribenboim: The Little Book of Big Primes, Springer-Verlag, Berlin, 1991, pp. 65–72. For information on prime numbers on the World Wide Web, including the current largest prime, see The Prime Page: http://www.utm.edu/research/primes/

    MATH  Google Scholar 

  2. L. E. Dickson: Amer. Journ. of Math. 35 (1913), pp. 413–422. For a proof similar to that presented above, see: H. N. Shapiro: Bull. Amer. Math. Soc, 55 (1949), 450–452.

    Article  MATH  Google Scholar 

  3. P. Erdős: Journal London Math. Soc. 9 (1934), pp. 278–282.

    Article  Google Scholar 

  4. H. Davenport: Sitzungsberichte der Preussischen Akademie der Wissenschaften 27 (1933), pp. 830–837, F. Behrend: ibid. 22 (1932), pp. 322–328, and 6 (1933), pp. 280–293.

    Google Scholar 

  5. B. Hornfeck and E. Wirsing: Math. Annalen 133 (1957), pp. 431–438.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Avidon: Acta Arithmetica 77 (1996), pp. 195–205.

    MathSciNet  Google Scholar 

  7. P. Erdős: Acta Arithmetica 5 (1959), pp. 25–33.

    Google Scholar 

  8. I. J. Schoenberg: Math. Zeitschr. 98 (1928), pp. 171–199.

    Article  MathSciNet  Google Scholar 

  9. See, for example, M. Kac: Bull. Amer. Math. Soc. 55 (1949), pp. 641–665; P. Erdős: Proc. Internat. Cong. Mat., Amsterdam, Groningen, E. P. Noordhoff, 1954, Vol. III, pp. 13–19; I. P. Kubilius: Uspechi Math. Nauk. (N.S.) 11 (1956), no. 2 (68) pp. 31–66 (in Russian), and Amer. Math. Transl, (2) 19 (1962), pp. 47–85.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Erdős: Publicationes Math. Debrecen 4 (1955), pp. 108–111. See also: LZ. Ruzsa: Mat. Lapok, 27 (1976–1979), pp. 95–143 and pp. 227–283 (in Hungarian), and P. D. T. A. Elliot: Probabilistic Number Theory I–II., Springer-Verlag, Berlin, 1979.

    Google Scholar 

  11. Erdős P.: Mat Lapok 11 (1960), pp. 26–33 (in Hungarian). P. ErdŐs: Acta Arithmetica 4 (1958), pp. 10–17.

    MathSciNet  Google Scholar 

  12. P. Erdős: Problem 97, Mat Lapok 8 (1957), p. 142, ibid. 11 (1960), pp. 152–154 (in Hungarian).

    Google Scholar 

  13. P. Erdős: Bull Amer. Math. Soc. 51 (1945), pp. 540–544.

    Article  MathSciNet  Google Scholar 

  14. P. Erdős: Quarterly Journ. of Math. 6 (1935), pp. 205–213.

    Article  Google Scholar 

  15. J. Browkin, A. Schinzel: Colloquium Math. 68 (1995), pp. 55–58.

    MathSciNet  MATH  Google Scholar 

  16. See, for example, E. landau: Über einige neuere Fortschritte der additiven Zahlentheorie, Cambridge Tract No. 35. 1937.

    Google Scholar 

  17. P. Erdős: Acta Arithmetica 4 (1958), pp. 10–17.

    MathSciNet  Google Scholar 

  18. K. Győry: Mat. Lapok 18 (1967), Problem 163, p. 344, Solution ibid. 20 (1969), p. 178 (in Hungarian).

    Google Scholar 

  19. H. N. Shapiro: American Math. Monthly 50 (1943), pp. 18–30.

    Article  MATH  Google Scholar 

  20. S. Pillai: Bull. Amer. Math. Soc. (1929), pp. 837–841.

    Google Scholar 

  21. S. Wlgert: Arkiv för Math. 3 (1907), pp. 1–9; S. RAMANUJAN: Journ. Indian Math. Soc. 7 (1915), pp. 131–133.

    Google Scholar 

  22. S. Ramanujan: Proc. London Math. Soc. 14 (1915), pp. 347–409.

    Article  MATH  Google Scholar 

  23. M.N. Huxley: Proc. London Math. Soc. 66 (1993), pp. 279–301.

    Article  MathSciNet  MATH  Google Scholar 

  24. See E. Landau: Vorlesungen über Zahlentheorie, S. Hirzel Verlag, Berlin, volume 2, pp. 183–184 and pp. 188–189.

    Google Scholar 

  25. N. M. Korobov: Doklady Akad. Nauk SSSR 119 (1958), pp. 433–434.

    MathSciNet  MATH  Google Scholar 

  26. P. Turán: Journ. London Math. Soc. 9 (1934), pp. 274–276.

    Article  Google Scholar 

  27. P. Erdős: Annais of Math. 47 (1946), pp. 1–20. See Theorem 11, page 17.

    Article  Google Scholar 

  28. L. Moser, J. Lambek: Proc. Amer. Math. Soc. 4 (1953), pp. 544–545. See the article referred to in footnote 30, Theorem 13, page 18. See A. Rényi: Mathematica Cluj 1 (1959), pp. 341–344.

    Article  MathSciNet  MATH  Google Scholar 

  29. These types of questions are dealt with in detail in P. D. T. A. Elliot: Arithmetic Functions and Integer Products, Springer-Verlag, Berlin (1985). See also K. Kovács: Acta Math. Hung. 50 (1987), pp. 123–125, and the references cited there.

    Book  Google Scholar 

  30. LZ. Ruzsa, personal communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Erdős, P., Surányi, J. (2003). Arithmetic Functions. In: Topics in the Theory of Numbers. Undergraduate Texts in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0015-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0015-1_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6545-0

  • Online ISBN: 978-1-4613-0015-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics