Skip to main content

Quantitative Spatial Analysis of Soil in the Field

  • Conference paper
Advances in Soil Science

Part of the book series: Advances in Soil Science ((SOIL,volume 3))

Abstract

Soil scientists have recognized variation in soil from place to place for many years. They have portrayed the variation by dividing large regions into smaller parcels each of which is relatively homogeneous, and they have classified the soil to show similarities between soil in widely separated parcels. This procedure, which may be regarded as standard soil survey practice, requires appreciation of the scale of change, the abruptness or otherwise of change, the degree of correlation among different soil properties, and of relations in the landscape. Yet that appreciation has almost always been intuitive. Good soil surveyors have needed flair. Rarely have they gained their appreciation by quantitative analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, M. 1984. Improving the estimation and modelling of the variogram. In: G. Verly, M. David, A.G. Journel, and A. Marechal (eds.),Geostatistics for natural resource characterization. Reidel, Dordrecht. pp 1–19.

    Google Scholar 

  • Armstrong, M., and R. Jabin. 1981. Variogram models must be positive-definite.Math. Geol. 13: 455–459.

    Article  Google Scholar 

  • Bartlett, M.S. 1966.An introduction to stochastic processes with special reference to methods and applications. 2nd ed. Cambridge University Press.

    Google Scholar 

  • Beckett, P.H.T., and P.A. Burrough. 1971. The relation between the cost and utility in soil survey. V. The cost-effectiveness of different soil survey procedures. J. Soil Sci. 22: 481–489.

    Article  Google Scholar 

  • Beckett, P.H.T., and R. Webster. 1971. Soil variability: a review. SoilsFert. 34: 115.

    Google Scholar 

  • Berry, M., and Z.V. Lewis, 1980. On the Weierstrass-Mandelbrot fractal function.Proceedings of the Royal SocietyA 370: 459–484.

    Google Scholar 

  • Burgess, T.M., and R. Webster. 1980a. Optimal interpolation and isarithmic mapping of soil properties. I. The semi-variogram and punctual kriging. J. Soil Sci. 31: 315–331.

    Article  Google Scholar 

  • Burgess, T.M., and R. Webster. 1980b. Optimal interpolation and isarithmic mapping of soil properties. II. Block kriging. J. Soil Sci. 31: 333–341.

    Article  Google Scholar 

  • Burgess, T.M., and R. Webster. 1984. Optimal sampling strategies for mapping soil types. I. Distribution of boundary spacings. J. Soil Sci. 35. 641–654.

    Article  Google Scholar 

  • Burgess, T.M., R. Webster, and A.B. McBratney. 1981. Optimal interpolation and isarithmic mapping of soil properties. IV. Sampling strategy. J. Soil Sci. 32: 643–659.

    Article  Google Scholar 

  • Burrough, P.A. 1983a. Multiscale sources of spatial variation in soil. I. The application of fractal concepts to nested levels of soil variation. J. Soil Sci. 34: 577–597.

    Article  Google Scholar 

  • Burrough, P.A. 1983b. Multiscale sources of spatial variation in soil. II. A nonBrownian fractal model and its application in soil survey. J. Soil Sci. 34: 560–599.

    Google Scholar 

  • Burrough, P.A. In press. The application of fractal ideas to geophysical phenomena.Bull. Inst. Math. Appl.

    Google Scholar 

  • Campbell, J.B. 1978. Spatial variation of sand content and pH within single contiguous delineations of two soil mapping units. Soil Sci. Soc. Am. J. 42: 460–464.

    Google Scholar 

  • Chatfield, C. 1980.The analysis of time series. Chapman and Hall, London.

    Google Scholar 

  • Christakos, G. 1984. On the problem of permissible covariance and variogram models.Water Resour. Res.20: 251–265.

    Article  Google Scholar 

  • Cochran, W.G. 1946. Relative accuracy of systematic and stratified random samples for a certain class of populations.Ann. Math. Stat.17: 164–177.

    Article  Google Scholar 

  • Cressie, N., and D.M. Hawkins. 1980. Robust estimation of the variogram. I.Math. Geol. 12: 115–125.

    Google Scholar 

  • Dalenius, T., J. Hajek, and S. Zubrzycki. 1961. On plane sampling and related geometrical problems. Proc.4th Berkeley Symp. Prob. Stat. 1: 125–150.

    Google Scholar 

  • David, M. 1977.Geostatistical ore reserve estimation. Elsevier, Scientific Publishing Co., Amsterdam.

    Google Scholar 

  • Delfiner, P. 1976. Linear estimation of non stationary spatial phenomena. In: M. Guarascio, M. David, and C. Huijbregts (eds.),Advanced geostatistics in the mining industry. Reidel, Dordrecht. pp. 49–68.

    Google Scholar 

  • Dunn, M.R. 1983. A simple sufficient condition for a variogram model to yield positive definite variances under restrictions.Math. Geol.15: 553–564.

    Article  Google Scholar 

  • Gajem, Y.M., A.W. Warrick, and D.E. Myers. 1981. Spatial dependence of physical properties of a typic torrifluventsoil. Soil Sci. Soc. Am. J. 45: 709–715.

    Article  Google Scholar 

  • Gandin, L.S. 1965.Objective analysis of meteorological fields. Israel Program for Scientific Translations, Jerusalem.

    Google Scholar 

  • Harbaugh, J.W., and D.F. Merriam. 1968. Computerapplications in stratigraphic analysis. John Wiley and Sons, New York.

    Google Scholar 

  • Hawkins, D.M., and D.F. Merriam, 1974. Zonation of multivariate sequences of digitized geologic data.Mathematical Geology6: 263–269.

    Article  Google Scholar 

  • Jenkins, G.M., and D.G. Watts. 1968. Spectralanalysis and its applications. Holden-Day, San Francisco.

    Google Scholar 

  • Journel, A.G., and C.J. Huijbregts. 1978. Mininggeostatistics. Academic Press, London.

    Google Scholar 

  • Kendall, M.G., and A. Stuart. 1976.The advanced theory of statistics. 3. Design and analysis, and time series. 3rd ed. Griffin, London.

    Google Scholar 

  • Kitanidis, P. K. 1983. Statistical estimation of polynominal generalized covariance functions and hydrological applications.Water Resour. Res.19: 909–921.

    Article  Google Scholar 

  • Kozlovskii, F.I., and N.P. Sorokina. 1976. The soil individual and elementary analysis of the soil-cover pattern. In: V.M. Fridland (ed.),Soil combinations and their genesis. Amerind Publishing Co., New Delhi. pp. 55–64. (Translated from Russian)

    Google Scholar 

  • Krige, D.G. 1966. Two dimensional weighted moving average trend surfaces for ore-evaluation. J.South African Inst. Min. Metal.66: 13–38.

    Google Scholar 

  • Mandelbrot, B.B. 1982.The fractal geometry of nature. W.H. Freeman, London.

    Google Scholar 

  • Matérn, B. 1960. Spatial variation. Stochastic models and their application to some problems in forest surveys and other sampling investigations.Meddelandenfran Statens Skogsforskningsinstitut 49: 1–144.

    Google Scholar 

  • Matheron, G. 1965.Les variables regionalisées et leur estimation. Masson, Paris.

    Google Scholar 

  • Matheron, G. 1971. The theory of regionalized variables and its applications.Cahiers du Centre de Morphologie Mathematique, Fontainebleau, No. 5.

    Google Scholar 

  • McBratney, A.B., and R. Webster. 1981 a. Spatial dependence and classification of the soil along a transect in northeast Scotland.Geoderma 26:63–82.

    Google Scholar 

  • McBratney, A.B., and R Webster. 1981 b. The design of optimal sampling schemes for local estimation and mapping of regionalized variables. II. Program and examples. Comp.Geosci. 7:335–365.

    Google Scholar 

  • McBratney, A.B., and R. Webster. 1983. Optimal interpolation and isarithmic mapping of soil properties. V. Co-regionalization and multiple sampling strategy. J. Soil Sci. 34: 137–162.

    Article  Google Scholar 

  • McBratney, A.B., R. Webster, and T.M. Burgess. 1981. The design of optimal sampling schemes for local estimation and mapping of regionalized variables. I. Theory and method. Comp. Geosci. 7: 331–334.

    Google Scholar 

  • McBratney, A.B., R. Webster, R.G. McLaren, and R.B. Spiers. 1982. Regional variation of extractable copper and cobalt in the topsoil of south-east Scotland.Agronomie2: 969–982.

    Article  Google Scholar 

  • Miesch, A.T. 1975. Variograms and variance components in geochemistry and ore evaluation. Geol. Soc.Am. Mem.142: 333–340.

    Google Scholar 

  • Morse, RK., and T.H. Thorburn. 1961. Reliability of soil maps. Proc.5th Int. Conf. Soil Mech. Found. Eng. 1: 259–262.

    Google Scholar 

  • Nortcliff, S. 1978. Soil variability and reconnaissance soil mapping: a statistical study in Norfolk. J. Soil Sci. 29: 403–418.

    Article  Google Scholar 

  • Oliver, M.A. 1984. Soil variation in the Wyre Forest: its elucidation and measurement. Ph.D. Thesis, Birmingham University.

    Google Scholar 

  • Olea, R.A. 1975.Optimum mapping techniques using regionalized variable theory. Series on Spatial Analysis No. 2. Kansas Geological Survey, Lawrence.

    Google Scholar 

  • Olea, R.A. 1977.Measuring spatial dependence with semi-variograms. Series on Spatial Analysis No. 3. Kansas Geological Survey, Lawrence.

    Google Scholar 

  • Orey, S. 1970. Gaussian sample functions and the Hausdorff dimension of level crossings.Zeitschrift für Wahrschein-lichkeitstheorie and Verwandte Gebiete15: 249–256.

    Article  Google Scholar 

  • Quenouille, M.H. 1949. Problems in plane sampling.Ann. Math. Stat.20: 355–375.

    Article  Google Scholar 

  • Ross, G.J.S. 1980.MLP Maximum Likelihood Program. Rothamsted Experimental Station, Harpenden.

    Google Scholar 

  • Russo, D., and E. Bresler. 1982. Soil hydraulic properties as stochastic processes. II. Errors of estimates in a heterogeneous field. Soil Sci. Soc.Am. J.46: 20–26.

    Google Scholar 

  • Sisson, J.B., and P.H. Wierenga. 1981. Spatial variability of steady-state infiltration rates as a stochastic process.Soil Sci. Soc. Am. J.45: 699–704.

    Article  Google Scholar 

  • Thornburn, T.H., and W.R. Larsen. 1959. A statistical study of soil sampling.J. Soil Mech. Found. Div. Proc. Am. Soc. Civ. Eng. 85, SMS, 1–13.

    Google Scholar 

  • Vauclin, M., S.R. Vieira, G. Vachaud, and D.R. Neilsen. 1983. The use of cokriging with limited field soil observations.Soil Sci. Soc. Am. J.47: 175–184.

    Article  Google Scholar 

  • Vieira, S.R, D.R. Neilsen, and J.W. Biggar. 1981. Spatial variability of fieldmeasured infiltration rate.Soil Sci. Soc. Am. J.45: 1040–1048.

    Article  Google Scholar 

  • Walker, P.H., G.F. Hall, and R Protz. 1968. Soil trends and variability across selected landscapes in Iowa.Soil Sci. Soc. Am. Proc.32: 97–101.

    Article  Google Scholar 

  • Webster, R. 1973. Automatic soil-boundary location from transect data.Math. Geol.5: 27–37.

    Article  Google Scholar 

  • Webster, R. 1977. Spectral analysis of gilgai soil.Austr. J. Soil Res.15: 191–204.

    Article  Google Scholar 

  • Webster, R 1978. Optimally partitioning soil transects.J. Soil Sci.29: 388–402.

    Article  Google Scholar 

  • Webster, R 1981. Experience of kriging from field measurements of soil properties. In: M.-C. Girard (ed.),Traitement informatique des donnees de sol. Tome 1. Institut National Agronomique, Paris-Grignon. pp. 101–109.

    Google Scholar 

  • Webster, R., and P.H.T. Beckett. 1968. Quality and usefulness of soil maps.Nature(London) 219: 680–682.

    Article  Google Scholar 

  • Webster, R, and T.M. Burgess. 1980. Optimal interpolation and isarithmic mapping of soil properties. III. Changing drift and universal kriging.J. Soil Sci.31: 505–524.

    Article  Google Scholar 

  • Webster, R., and T.M. Burgess. 1984a. Une approche probabiliste de la cartographie du sol.Sciences de la Terre, Série Informatique Geologique18: 175–185.

    Google Scholar 

  • Webster, R., and T.M. Burgess. 1984b. Sampling and bulking strategies for estimating soil properties of small regions.J. Soil Sci.35: 127–140.

    Article  Google Scholar 

  • Webster, R., and B.E. Butler. 1976. Soil classification and survey studies at Ginninderra.Austr. J. Soil Res.14: 1–24.

    Article  Google Scholar 

  • Webster, R., and H.E. Cuanalo de la C. 1975. Soil transect correlograms of north Oxfordshire and their interpretation.J. Soil Sci.26: 176–194.

    Article  Google Scholar 

  • Webster, R., and S. Nortcliff. 1984. Improved estimation of micro nutrients in hectare plots of the Sonning series.J. Soil Sci.35: 667–672.

    Article  Google Scholar 

  • Xu Jiyan, and R Webster. 1984. A geostatistical study of topsoil properties in Zhangwu County, China.Catena11: 13–26.

    Article  Google Scholar 

  • Yates, F. 1948. Systematic sampling.Phil. Trans. Roy. Soc. Lond. A 241: 345–377.

    Article  Google Scholar 

  • Yost, R.S., G. Uehara, and R.L. Fox. 1982. Geostatistical analysis of soil chemical properties of large land areas. I. Semi-variograms.Soil Sci. Soc. Am. J.46: 1028–1032.

    Article  Google Scholar 

  • Youden, W.J., and A. Mehlich. 1937. Selection of efficient methods for soil sampling.Contr. Boyce Thompson Inst. Plant Res.9: 59–70.

    Google Scholar 

  • Zubrzycki, S. 1957. On estimating gangue parameters.Zastosowania Matematakyi3: 105–153. (In Polish)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag New York Inc.

About this paper

Cite this paper

Webster, R. (1985). Quantitative Spatial Analysis of Soil in the Field. In: Stewart, B.A. (eds) Advances in Soil Science. Advances in Soil Science, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5090-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5090-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9559-4

  • Online ISBN: 978-1-4612-5090-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics