Skip to main content

Characteristics of Dolphin Sonar Signals

  • Chapter
Book cover The Sonar of Dolphins

Abstract

The sonar task for dolphins perceiving their environment involves detection, localization, discrimination, and recognition of objects of interest. Target information such as range, azimuth, direction of movement, speed, and size should also be of interest. The ability of dolphins to accurately perceive their environment and to perform difficult recognition and discrimination tasks depends to a large extent on the characteristics of their sonar signals and how these signals are emitted. The signals must have sufficient energy to detect small targets at large ranges. They must also have sufficient information-carrying capacity so that fine features and characteristics of objects and targets can be determined by analyzing their sonar echoes. At a minimum, a dolphin sonar system should be able to detect and recognize prey, obstacles, and predators. The sonar task is usually performed in a noisy or highly reverberant environment associated with shallow waters, or during searches near the bottom or in the presence of many obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Au, W.W.L. (1980). Echolocation signals of the Atlantic bottlenose dolphin (Tursiops truncatus) in open waters. In: R.G. Busnel and J.F. Fish, eds., Animal Sonar Systems. New York: Plenum Press, pp. 251–282.

    Google Scholar 

  • Au, W.W.L., and Pawloski, D.A. (1988). Detection of complex echoes in noise by an echolocating dolphin. J. Acoust. Soc. Am. 83: 662–668.

    Article  PubMed  CAS  Google Scholar 

  • Au, W.W.L., and Penner, R.H. (1981). Target detection in noise by echolocating Atlantic bottlenose dolphins. J. Acoust. Soc. Am. 70: 251–282.

    Article  Google Scholar 

  • Au, W.W.L., and Turl, C.W. (1983). Target detection in reverberation by an echolocating Atlantic bottlenose dolphin (Tursiops truncatus). J. Acoust. Soc. Am. 73: 1676–1681.

    Article  PubMed  CAS  Google Scholar 

  • Au, W.W.L., Floyd, R.W., Penner, R.H., and Murchison, A.E. (1974). Measurement of echolocation signals of the Atlantic bottlenose dolphin, Tursiops truncatus Montagu, in open waters. J. Acoust. Soc. Am. 54: 1280–1290.

    Article  Google Scholar 

  • Au, W.W.L., Schusteruran, R.J., and Kersting, D.A. (1980). Sphere-cylinder discrimination via echolocation by Tursiops truncatus. In: R.G. Busnel and J.F. Fish, eds., Animal Sonar Systems, edited by New York: Plenum Press, pp. 859–862.

    Google Scholar 

  • Au, W.W.L., Penner, R.H., and Kadane, J. (1982). Acoustic behavior of echolocating Atlantic bottlenose dolphin. J. Acoust. Soc. Am. 71: 1269–1275.

    Article  Google Scholar 

  • Au, W.W.L., Carder, D.A., Penner, R.H., and Scronce, B.L. (1985). Demonstration of adaptation in beluga whale echolocation signals. J. Acoust. Soc. Am. 77: 726–730.

    Article  PubMed  CAS  Google Scholar 

  • Au, W.W.L., Penner, R.H., and Turl, C.W. (1987). Propagation of beluga echolocation signals. J. Acoust. Soc. Am. 82: 807–813.

    Article  PubMed  CAS  Google Scholar 

  • Awbrey, F.T., Norris, J.C., Hubbard, A.B., and Evans, W.E. (1979). The bioacoustics of the Dall’s porpoise-salmon drift net interaction. H/SWRI Techn. Rep. 79–120, pp. 79–120.

    Google Scholar 

  • Babkin, V.P., and Dubrovskiy, N.A. (1971). Range of action and noise stability of the echolocation system of the bottlenose dolphin in detection of various targets. Tr. Akust. Inst. 17: 29–42.

    Google Scholar 

  • Bel’kovich, V.M., and Dubrovskiy, N.A. (1977). Sensory bases of cetacean orientation. U.S. Joint Publication Research Service JPRSL/7157, May 27, 1977.

    Google Scholar 

  • Dawson, S.M. (1988). The high frequency sounds of free-ranging Hector’s Dolphin, Cephalorhynchus hectori. Rep. Int. Whal. Commn. (Spec. Iss. 9), 339–341.

    Google Scholar 

  • Dziedzic, Z.-A. (1978). Etude experimentale des emissions sonar de certains delphinides et notamment de D. Delphis et T Truncatus. These de Doctorat D’Etat Es-Sciences Appliquees, l’Universite de Paris V II.

    Google Scholar 

  • Dziedzic, A., and Alcuri, G. (1977). Reconnaissance acoustique des formes et caracteristiques des signaux sonars chez Tursiops truncatus, famille des delphinides. C.R. Acad. Sc. Paris 285, Series D, 981–984.

    Google Scholar 

  • Ellis, R. (1989). Dophins and Porpoises, New York: Alfred Knopf.

    Google Scholar 

  • Evans, W.E. (1973). Echolocation by marine delphinids and one species of fresh-water dolphin. J. Acoust. Soc. Am. 54: 191–199.

    Article  Google Scholar 

  • Evans, W.W., and Powell, B.A. (1967). Discrimination of different metallic plates by an echolocating delphinid. In: R.G. Busnel, ed., Animal Sonar Systems: Biology and Bionics. Laboratoire de Physiologie Acoustique, Jouy-en-Josas, France, pp. 363–382.

    Google Scholar 

  • Evans, W.E., Aubrey, F.T., and Hackbarth, H. (1988). High frequency pulse produced by free ranging Commerson’s dolphin (Cephalorhynchus commersonii) compared to those of phocoenids. Rep. Int. Whal. Commn. ( Spec. Iss. 9 ), 173–181.

    Google Scholar 

  • Hatakeyama, Y., Ishii, K., Soeda, H., and Shimamura, T. (1988). Observation of harbor porpoise’s behavior to salmon gillnet, (Document submitted to the International North Pacific Fisheries Commission.), 17 p. Fisheries Agency of Japan, Tokyo, Japan.

    Google Scholar 

  • Hatakeyama, Y., and Soeda, H. (1990). Studies on echolocation of porpoises taken in salmon gillnet fisheries. In: J.A. Thomas and R. Kastelein, eds., Sensory Abilities of Cetaceans. New York: Plenum Press, pp. 269–281.

    Google Scholar 

  • Herald, E.S., Brownell, R.L., Jr., Frye, F.L., Morris, E.J., Evans, W.E., and Scott, A.B. (1969). Blind river dolphin: first side-swimming cetacean. Science 166: 1408–1410.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, C.S. (1967). Discussion. In: R.G. Busnel ed., Animal Sonar Systems: Biology and Bionics. Laboratoire de Physiologie Acoustique, Jouy-en-Josas, France, pp. 384–398.

    Google Scholar 

  • Kamminga, C. (1988). Echolocation signal types of odontocetes. In: P.E. Nachtigall and P.W.B. Moore, eds., Animal Sonar: Processes and Performance. New York: Plenum Press, pp. 9–22.

    Google Scholar 

  • Kamminga, C., and Wiersma, H. (1981). Investigations on cetacean sonar II. Acoustical similarities and differences in odontocete sonar signals. Aquatic Mamml. 8: 41–62.

    Google Scholar 

  • Kamminga, C., and Wiersma, H. (1982). Investigations on cetacean sonar V. The true nature of the sonar sound of Cephaloryncus Commersonii. Aquatic Mamml. 9: 95–104.

    Google Scholar 

  • Kamminga, C., Dudok van Hell, W.H., and Tas’an, G. (1983). Investigations on cetacean sonar VI. Sonar sounds in Orcaella Brevirostris of the Makaham River, East Kalimanta, Indonesia; first descriptions of acoustic behaviour. Aquatic Mamml. 10: 83–104.

    Google Scholar 

  • Kamminga, C., Engelsma, F.J., and Terry, R.P. (1989). Acoustic observations and comparison on wild, captive and open water Sotalia, and riverine Inia. 8th Biennial Conf. Biol. of Mar. Mamm., Pacific Grove, Cal.

    Google Scholar 

  • Mohl, B., and Andersen, S. (1973). Echolocation: high frequency component in the click of the harbour porpoise (Phocoena phocoena L.), J. Acoust. Soc. Am. 54: 1368–1372.

    Article  PubMed  CAS  Google Scholar 

  • Mohl, B., Surlykke, A., and Miller, L.A. (1990). High intensity narwhal clicks. In: J.A. Thomas and R.A. Kastelein, eds., Sensory Abilities of Cetaceans. New York: Plenum Press, pp. 295–303.

    Google Scholar 

  • Moore, P.W.B., and Pawloski, D. (1990). Investigation of the control of echolocation pulses in the dolphin (Tursiops truncatus). In: J.A. Thomas and R.A. Kasterlein, eds., Cetacean Sensory Systems: Field and Laboratory Evidences. New York: Plenum Press, pp. 305–316.

    Google Scholar 

  • Morozov, B.P., Akapiam, A.E., Burdin, V.I., Zaitseva, K.A., and Y.A. Solovykh. (1972). Tracking frequency of the location signals of dolphins as a function of distance to the target. Biofiika 17: 139–145.

    CAS  Google Scholar 

  • Norris, K.S., and Evans, W.E. (1966). Directionality of echolocation clicks in the rough-tooth porpoise, Steno Bredanensis (Lesson). In: W.N. Tavolga, ed., Marine Bio-Acoustics. New York: Pergamon Press, pp. 305–324.

    Google Scholar 

  • Penner, R.H. (1988). Attention and detection in dolphin echolocation. In: P.E. Nachtigall and P.W.B. Moore, eds., Animal Sonar: Processes and Performance. New York: Plenum Press, pp. 707–713.

    Google Scholar 

  • Thomas, J.A., and Turl, C.W. (1990). Echolocation characteristics and range detection by a false killer whale (Pseudorca crassidens). In: J.A. thomas and R. Kasterlein, eds., Cetacean Sensory Systems: Field and Laboratory Evidences. New York: Plenum Press, pp. 321–334.

    Google Scholar 

  • Thompson, R.K.R., and Herman, L.M. (1975). Underwater frequency discrimination in the bottlenose dolphin (1–140 kHz) and the human (1–8 kHz). J. Acoust. Soc. Am. 57: 943–948.

    Article  PubMed  CAS  Google Scholar 

  • Turl, C.W., Penner, R.H., and Au, W.W.L. (1987). Comparison of target detection capabilities of the beluga and bottlenose dolphin. J. Acoust. Soc. Am. 82: 1487–1491.

    Google Scholar 

  • Turl, C.W., and Penner, R.H. (1989). Differences in echolocation click patterns of the beluga (Delphinapterus leucas) and the bottlenose dolphin (Tursiops truncatus). J. Acoust. Soc. Am. 68: 497–502.

    Article  Google Scholar 

  • Urick, R.J. (1983). Principles of underwater sound. New York: McGraw-Hill.

    Google Scholar 

  • Wiersma, H. (1982). Investigations on cetacean sonar IV, a comparison of wave shapes of odontocete sonar signls. Aquat. Mamm. 9: 57–67.

    Google Scholar 

  • Youfu, X., and Rongcai, J. (1989). Underwater acoustic signals of the baiji, Lipotes vexillifer. In: W.R. Perrin et al., eds., Biology and Conservation of the River Dolphins. IUCN Species Survival Commission, Gland, Switzerland, pp. 129–136.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Au, W.W.L. (1993). Characteristics of Dolphin Sonar Signals. In: The Sonar of Dolphins. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4356-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4356-4_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8745-2

  • Online ISBN: 978-1-4612-4356-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics