Skip to main content

Brownian Combustion Engines

  • Chapter
Fluctuations and Order

Part of the book series: Institute for Nonlinear Science ((INLS))

Abstract

Protein motors operate in a Brownian regime where inertia is negligible and thermal fluctuations are important. We show that, in this regime, symmetry breaking and time correlations suffice to generate motion and forces. We also show that a chemical cycle that gains energy while going around generates time correlations. Thus, we present a natural description of a system where the energy stored in chemical compounds can be transduced into motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Darnell, H. Lodish, and D. Baltimore, Molecular Cell Biology (Scientific American Books, New York, 1990).

    Google Scholar 

  2. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson, The Molecular Biology of the Cell, 2nd ed., (Garland, New York, 1989).

    Google Scholar 

  3. F. Gittes, B. Mickey, J. Nettleton, and J. Howard, J. Cell Biol. 120, 923 (1993).

    Article  Google Scholar 

  4. A. Ott, M. Magnasco, A. Simon, and A. Libchaber, Phys. Rev. E 48 (3), R1642 (1993).

    Article  ADS  Google Scholar 

  5. M. Magnasco, Phys. Rev. Lett. 71 (10), 1477 (1993).

    Article  ADS  Google Scholar 

  6. J. Maddox, Nature 365, 203 (1993)

    Article  ADS  Google Scholar 

  7. R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, MA, 1966).

    Google Scholar 

  8. H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer-Verlag, Berlin, 1989).

    Book  MATH  Google Scholar 

  9. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1989).

    Google Scholar 

  10. P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62 (2), 251 (1990).

    Article  ADS  Google Scholar 

  11. W. Horsthemke and R. Lefever, Noise Induced Transitions: Theory and Applications in Physics, Chemistry and Biology (Springer-Verlag, Berlin, 1984).

    MATH  Google Scholar 

  12. P.S. Hagan, C.R. Doering, and C.D. Levermore, J. Stat. Phys. 54 (5/6), 1321 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. W. Houston, Principles of Mathematical Physics (McGraw-Hill, New York, 1934).

    Google Scholar 

  14. H.A. Kramers, Physica 7, 284 (1940).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. S. Leibler and D. Huse, J. Cell Biol. 121 (6), 1356 (1993).

    Article  Google Scholar 

  16. R. Vale and F. Oosawa, Adv. Biophys. 26, 97 (1990).

    Article  Google Scholar 

  17. C.S. Peskin, G.M. Odell, and G.F. Oster, Biophys. J. 65, 316 (1993).

    Article  ADS  Google Scholar 

  18. N.J. Cordova, B. Ermentrout, and G.F. Oster, Proc. Natl. Acad. Sci. 89, 339 (1992).

    Article  ADS  Google Scholar 

  19. S.M. Simon, CS. Peskin, and G.F. Oster, Proc. Natl. Acad. Sci. 89, 3770 (1992).

    Article  ADS  Google Scholar 

  20. R. Fox, Biological Energy Transduction: The Uroboros (Wiley-Interscience, New York, 1982).

    Google Scholar 

  21. A. Adjari and J. Prost, Mouvement Induit par un Potentiel Périodique de Basse Symetrie preprint (ESPCI, Paris, 1993).

    Google Scholar 

  22. M. Buttiker, Z. Phys. B 68, 161 (1987).

    Article  ADS  Google Scholar 

  23. N. van Kampen, Z. Phys. B 68, 125 (1987).

    Article  ADS  Google Scholar 

  24. N. van Kampen, IBM J Res. Develop. 32, 107 (1988).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Magnasco, M.O. (1996). Brownian Combustion Engines. In: Millonas, M. (eds) Fluctuations and Order. Institute for Nonlinear Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3992-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3992-5_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8463-5

  • Online ISBN: 978-1-4612-3992-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics