Skip to main content

The Role of the Chemistry Laboratory in the Clinical Study of Renal Disease

  • Chapter
Renal Disease in Children
  • 132 Accesses

Abstract

Chemical methods for pediatric specimens were originally developed as manual micromethods. Within the past 10 years, a number of automated instruments capable of handling microsamples in the range of 50 to 200 µL have become available, with individual analysis requiring as little as 5 to 10 µL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clayton BE, Jenkins P, Round JM (1980) Paediatric Chemical Pathology. Blackwell Scientific Publications, Oxford

    Google Scholar 

  2. Meites S (ed) (1981) Pediatric Clinical Chemistry. American Association for Clinical Chemistry, Washington DC

    Google Scholar 

  3. Hicks JM, Boeckxx RL (eds) (1984) Pediatric Clinical Chemistry. American Association for Clinical Chemistry, Washington DC

    Google Scholar 

  4. Tietz NW (ed) (1987) Textbook of Clinical Chemistry, 3rd edition, WB Saunders, Philadelphia

    Google Scholar 

  5. Chantier C, Barratt TM (1987) Laboratory evaluation. In: Holliday MA, Barrett TM, Vernier RL (eds) Pediatric Nephrology, 2nd edition. Williams and Wilkins, Baltimore, pp 282–299

    Google Scholar 

  6. Evans SE, Durbin GM (1983) Aspects of the physiological and pathological background to neonatal clinical chemistry. Ann Clin Biochem 20:193–207

    PubMed  Google Scholar 

  7. Meites S, Glassco KM (1985) Studies on the quality of specimens obtained by skin-puncture of children. 2. An analysis of blood-collecting practices in a pediatric hospital. Clin Chem 31:1669–1672

    PubMed  CAS  Google Scholar 

  8. Holzel WGE (1987) Intra-individual variation of some analytes in serum of patients with chronic renal failure. Clin Chem 33:670–673

    PubMed  CAS  Google Scholar 

  9. Steifes MW, Freier EF (1976) A simple and precise method of determining sodium, potassium, and chloride concentrations in hyperlipemia. J Lab Clin Med 88:683–688

    Google Scholar 

  10. Narins RG, Jones ER, Stom MC, et al (1982) Diagnostic strategies in disorders of fluid, electrolyte and acid-base homeostasis. Am J Med 72:496–520

    Article  PubMed  CAS  Google Scholar 

  11. Harrington JT, Cohen JJ (1975) Measurement of urinary electrolytes—indications and limitations. N Engl J Med 293:1241–1243

    Article  PubMed  CAS  Google Scholar 

  12. Smithline N, Gardner KD (1976) Gaps-anionic and osmolal. JAMA 236:1594–1597

    Article  PubMed  CAS  Google Scholar 

  13. Dorwart WV, Chalmers L (1975) Comparison of methods for calculating serum osmolality from chemical concentrations, and the prognostic value of such calculations. Clin Chem 21:190–194

    PubMed  CAS  Google Scholar 

  14. Beetham R (1982) A review of blood pH and blood-gas analysis. Ann Clin Biochem 19:198–213

    PubMed  Google Scholar 

  15. Hicks JM (1985) In situ monitoring. Clin Chem 31:1931–1935

    PubMed  CAS  Google Scholar 

  16. Graham G, Kenny MA (1980) Performance of a radiometer transcutaneous oxygen monitor in a neonatal-intensive-care unit. Clin Chem 26:629–633

    PubMed  CAS  Google Scholar 

  17. Gosling P (1986) Analytical reviews in clinical biochemistry: calcium measurement. Ann Clin Biochem 23:146–156

    PubMed  CAS  Google Scholar 

  18. Narayanan S, Appleton HD (1980) Creatinine: a review. Clin Chem 26:1119–1126

    PubMed  CAS  Google Scholar 

  19. Spencer K (1986) Analytical reviews in clinical biochemistry: the estimation of creatinine. Ann Clin Biochem 23:1–25

    PubMed  CAS  Google Scholar 

  20. Applegarth DA, Ross PM (1975) The unsuitability of creatinine excretion as a basis for assessing the excretion of other metabolites by infants and children. Clin Chim Acta 64:83–85

    Article  PubMed  CAS  Google Scholar 

  21. Barratt TM, McLaine PN, Soothill JF (1970) Albumin excretion as a measure of glomerular dysfunction in children. Arch Dis Child 45:496–501

    Article  PubMed  CAS  Google Scholar 

  22. Woo J, Floyd M, Cannon DC (1981) Albumin and β2-microglobulin radioimmunoassays applied to monitoring of renal-allograft function and in differentiating glomerular and tubular diseases. Clin Chem 27:709–713

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Rock, R.C. (1990). The Role of the Chemistry Laboratory in the Clinical Study of Renal Disease. In: Barakat, A.Y. (eds) Renal Disease in Children. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3260-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3260-5_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7938-9

  • Online ISBN: 978-1-4612-3260-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics