Skip to main content

Technologies for Geophysical Exploration on the Ocean Bottom

  • Conference paper
Gorda Ridge
  • 150 Accesses

Abstract

Several approaches have been used for ocean bottom geophysical exploration including magnetic, gravity, and seismic methods. Magnetic anomalies near the ocean bottom are measured with a nuclear precession magnetometer deployed from a deeply towed vehicle. They reveal fine-scale crustal magnetization indicating geomagnetic field reversals and zones of varying lithology. Gravity anomalies of the ocean bottom are measured with a gravimeter placed on the seafloor. The seafloor gravimeter is more precise than sea surface gravimeters owing to greater platform stability, and it has improved capability for revealing crustal density structures because of its closer proximity to crustal sources. Ocean bottom seismic methods use on-bottom seismographs or hydrophones and on-bottom shots. Use of on-bottom seismic instrumentation allows characterization of shallow inhomogeneous crustral structure. Accurate positioning is needed for fine-scale ocean bottom geophysical exploration and may be accomplished with acoustic transponders and satellite navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acker FE (1971) Calculation of the signal voltage induced in a toroidal proton-precession magnetometer sensor. IEEE Trans Geosci Electronics GE-9:98–103.

    Google Scholar 

  • Atwater TM, Mudie JM (1973) Detailed nearbottom geophysical study of the Gorda Rise. J Geophys Res 78:8665–8686.

    Article  Google Scholar 

  • Beyer LA, Von Huene RE, McCulloh TH, Lovett JR (1966) Measuring gravity on the seafloor in deep water. J Geophys Res 71:2091–2100.

    Google Scholar 

  • Dorman LM, Hildebrand JA, Hammer PTC, Sauter AW, Schreiner AE (1986) Seismic study of a seamount interior. EOS 67:1083.

    Google Scholar 

  • Dzurisin D, Anderson LA, Eaton GP, et al. (1980) Geophysical observations of Kilaeua volcano, Hawaii. 2. Constraints on the magma supply during November 1975-September 1977. J Volcanol Geotherm Res 7:241–269.

    Article  Google Scholar 

  • Heiskanen WA, Vening Meinesz FA (1958) The Earth and its Gravity Field. New York: McGraw-Hill, p 470.

    Google Scholar 

  • Hildebrand JA, Dorman LM, Hammer PTC, Schriener AE, Sauter AW, Cornuelle B (1987) Seismic tomography of Jasper Seamount. Geophys Res Lett (submitted).

    Google Scholar 

  • Jachens RC, Eaton GP (1980) Geophysical observation of Kilauea volcano, Hawaii. 1. Temporal gravity variations related to the 29 November 1975, M-7.2 earthquake and associated summit collapse. J Volcanol Geotherm Res 7:225–240.

    Article  Google Scholar 

  • Klitgord KD, Mudie JD, Huestis SP, Parker RL (1975) An analyis of near-bottom magnetic anomalies: Sea-floor spreading and the magnetized layer. Geophys J R Astron Soc 43:387–424.

    Google Scholar 

  • Koelsch DE, Purdy GM (1979) An ocean bottom hydrophone instrument for seismic refraction experiment in the deep ocean. Marine Geophys Res 4:115–125.

    Article  Google Scholar 

  • Koelsch DE, Witzell WE, Broda JE, Wooding JW, Purdy GM (1986) A deep towed explosive source for seismic experiments on the ocean floor. Marine Geophys Res 8:345–361.

    Article  Google Scholar 

  • Luyendyk BP (1984) On-bottom gravity profile across the East Pacific Rise crest at 21° north. Geophysics 49:2166–2177.

    Article  Google Scholar 

  • Macdonald KC, Miller SP, Huestis SP, Spiess FN (1980) Three-dimensional modeling of a magnetic reversal boundary from inversion of deep-tow measurements. J Geophys Res 85:3670–3680.

    Article  Google Scholar 

  • Macdonald KC, Miller SP, Luyendyk BP, Atwater TM, Shure L (1983) Investigation of a Vine-Matthews magnetic lineation from a submersible: The source and character of marine magnetic anomalies. J Geophys Res 88:3403–3418.

    Article  Google Scholar 

  • Moore RD, Dorman LM, Huang C, Berliner DL (1981) An ocean bottom, microprocessor based seismometer. Marine Geophys Res 4:451–477.

    Article  Google Scholar 

  • Mudie JD (1964) Deep-towed proton magnetometer. MPL Technical Memorandum 150: Scripps Institution of Oceanography, La Jolla, CA.

    Google Scholar 

  • Nettleton LL (1976) Gravity and Magnetics in Oil Prospecting. New York: McGraw-Hill.

    Google Scholar 

  • Neuman LD, Talwani M (1972) Accelerations and errors in gravity measurements on surface ships. J Geophys Res 77:4330–4338.

    Article  Google Scholar 

  • Orcutt JA, Kennett BLN, Dorman LM (1976) Structure of the East Pacific Rise from an ocean bottom seismometer survey. Geophys J R Astron Soc 45:305–320.

    Google Scholar 

  • Pepper TB (1941) The Gulf underwater gravimeter. Geophysics 6:34–44.

    Article  Google Scholar 

  • Purdy GM (1986) A determination of the seismic velocity structure of sediments using both sources and receivers near the ocean floor. Marine Geophys Res 8:75–91.

    Article  Google Scholar 

  • Sanderson TJO (1982) Gravimetric defection of magma movements at Mount Etna. Nature 297:487–490.

    Article  Google Scholar 

  • Schreiner AE, Dorman LM, Hildebrand JA, Lahav D, Spiess FN (1987) Wavelength and correlation length of deep ocean ambient seismic noise. EOS 68:1373.

    Google Scholar 

  • Slocum RE, Marton BI (1974) A nuclear free precession magnetometer using optically polarized He3 gas. IEEE Trans Magnetics 10:528–531.

    Article  Google Scholar 

  • Spiess FN (1980) Acoustic techniques for marine geodesy. Marine Geodesy 4:13–27.

    Article  Google Scholar 

  • Spiess FN (1985) Suboceanic geodetic measurements. IEEE Trans Geosci Remote Sens 23:502–510.

    Article  Google Scholar 

  • Spiess FN, Mudie JD (1970) Small scale topographic and magnetic feature. In: AE Maxwell (eds) The Sea, 4, Part I. New York: John Wiley and Sons, pp 205–250.

    Google Scholar 

  • Spiess FN et al. (1980) East Pacific Rise: Hot springs and geophysical experiments. Science 207:1421–1432.

    Article  Google Scholar 

  • Spiess FN, Cox CS, Hays EE, Porter RP, Roberts FA (1983) Seafloor referenced positioning: Needs and opportunities. Washington: Panel on Ocean Bottom Positioning of the National Research Council’s Committee on Geodesy National Academy Press, p 54.

    Google Scholar 

  • Stevenson JM, Hammer PTC, Hildebrand JA, Fox CG (1988) The sea-surface and seafloor gravity field of Axial Volcano, Juan de Fuca Ridge. EOS 69:1467.

    Article  Google Scholar 

  • Toomey DR, Purdy GM, Solomon SC (1988) First results from an East Pacific Rise seismic tomography experiment. EOS 69:1474.

    Google Scholar 

  • Wing CG (1967) An experimental deep-sea-bottom gravimeter. J Geophys Res 72:1249–1257.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Hildebrand, J.A. (1990). Technologies for Geophysical Exploration on the Ocean Bottom. In: McMurray, G.R. (eds) Gorda Ridge. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3258-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3258-2_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7937-2

  • Online ISBN: 978-1-4612-3258-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics