Skip to main content

Relativistic DV-Xα Studies of Three-Coordinate Actinide Complexes

  • Chapter
Book cover Density Functional Methods in Chemistry

Abstract

The chemistry of the actinide elements continues to present challenges to both experimental and theoretical chemists. Actinide compounds have been found to possess a diversity of structures and reactivities that are not only extensions of but significant additions to those recognized for the transition metal elements.1 From a theoretical perspective, the number of electrons and the importance of relativistic corrections in actinide systems pose several problems: theoretical rigor is more difficult to maintain, calculations are more computationally demanding, and results are more difficult to interpret than those obtained from non-relativistic calculations. Nonetheless, significant advances have been made in the application of molecular electronic structure methods to actinide compounds. Local density functional (LDF) methods in particular have several features that make them attractive for the study of heavy element structure and bonding. We present here a brief description of a computational scheme that employs the LDF formalism to address questions in actinide electronic structure and then demonstrate its application to one system in particular: three-coordinate actinide(III) compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Katz, J. J.; Morss, L. R.; Seaborg, G. T., ed., The Chemistry of the Actinide Elements, Chapman and Hall, New York 1986.

    Google Scholar 

  2. Marks, T. J.; Fragalà, I. L., ed., Fundamental and Technological Aspects of Organo-f-Element Chemistry, Reidel, Dordrecht 1985.

    Google Scholar 

  3. Marks, T. J.; Ernst, R. D. in Comprehensive Organometallic Chemistry, Ch. 21, Wilkinson, G.; Stone, F. G. A.; Abel, E. W., ed., Pergamon Press, Oxford 1982.

    Google Scholar 

  4. Pyykkö, P. Chem. Rev. 1988, 88, 563–594.

    Article  Google Scholar 

  5. Pitzer, K. S. Acc. Chem. Res. 1979, 12, 271–276.

    Article  CAS  Google Scholar 

  6. Pyykkö, P.; Desclaux, J.-P. Acc. Chem. Res. 1979, 12, 276–281.

    Article  Google Scholar 

  7. Schiff, L. I. Quantum Mechanics, 3rd. ed., McGraw-Hill, New York 1968.

    Google Scholar 

  8. Grant, I. P. Adv. Phys. 1970, 19, 747–811.

    Article  CAS  Google Scholar 

  9. Grant, I. P. in Methods in Computational Chemistry, Vol. 2: Relativistic Effects in Atoms and Molecules, Ch. 1, Wilson, S. ed., Plenum Press, New York 1988.

    Google Scholar 

  10. Wilson, S. in Methods in Computational Chemistry, Vol. 2: Relativistic Effects in Atoms and Molecules, Ch. 2, Wilson, S. ed., Plenum Press, New York 1988.

    Google Scholar 

  11. Szabo, A.; Ostlund, N. Modern Quantum Chemistry, McGraw-Hill, New York 1989.

    Google Scholar 

  12. Desclaux, J.-P. Atom. Data Nucl. Data. Tables 1973, 12, 312–406.

    Article  Google Scholar 

  13. Slater, J. C. Adv. Quantum Chem. 1972, 6, 1–92.

    Article  CAS  Google Scholar 

  14. Rosen, A.; Ellis, D. E. Chem. Phys. Lett. 1974, 27, 595–599.

    Article  CAS  Google Scholar 

  15. Rosen, A.; Ellis, D. E. J. Chem. Phys. 1975, 62, 3039–3049.

    Article  CAS  Google Scholar 

  16. Powell, R. E. J. Chem. Ed. 1968, 45, 558–563.

    Article  CAS  Google Scholar 

  17. White, H. E. Phys. Rev. 1931, 38, 513–520.

    Article  CAS  Google Scholar 

  18. Averill, F. W.; Ellis, D. E. J. Chem. Phys. 1973, 59, 6412–6418.

    Article  CAS  Google Scholar 

  19. Doris, K. A.; Delley, B.; Ratner, M. A.; Marks, T. J.; Ellis, D. E. J. Phys. Chem. 1984, 88, 3157–3159.

    Article  CAS  Google Scholar 

  20. Ellis, D. E.; Goodman, G. L. Int. J. Quantum Chem. 1984, 25, 185–200.

    Article  CAS  Google Scholar 

  21. Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 41–51.

    Article  CAS  Google Scholar 

  22. Delley, B.; Ellis, D. E. J. Chem. Phys. 1982, 76, 1949–1960.

    Article  CAS  Google Scholar 

  23. Van Der Sluys, W. G.; Burns, C. J.; Sattelberger, A. P. Organometallics 1989, 8, 855–857.

    Article  Google Scholar 

  24. Andersen, R. A. Inorg. Chem. 1979, 18, 1507–1509.

    Article  CAS  Google Scholar 

  25. Van Der Sluys, W. G.; Burns, C. J.; Huffman, J. C.; Sattelberger, A. P. J. Am. Chem. Soc. 1988, 110, 5924–5925.

    Article  Google Scholar 

  26. Brennan, J. G. Ph. D. Dissertation, University of California, Berkeley, 1985.

    Google Scholar 

  27. Quasi-relativistic Xα-SW calculations have been used extensively in the investigation of Cp3An and its adducts

    Google Scholar 

  28. Bursten, B. E.; Rhodes, L. F.; Strittmatter, R. J. J. Am. Chem. Soc. 1989, 111, 2758–2766.

    Article  CAS  Google Scholar 

  29. Bursten, B. E.; Rhodes, L. F.; Strittmatter, R. J. J. Am. Chem. Soc. 1989, 111, 2756–2758.

    Article  CAS  Google Scholar 

  30. Bursten, B. E.; Rhodes, L. F.; Strittmatter, R. J. J. Less Com. Met. 1989, 149, 207–211.

    Article  Google Scholar 

  31. Bursten, B. E.; Strittmatter, R. J. J. Am. Chem. Soc. 1987, 109, 6606–6608.

    Article  CAS  Google Scholar 

  32. Bursten, B. E.; Strittmatter, R. J., submitted for publication.

    Google Scholar 

  33. Ziegler, T. J. Am. Chem. Soc. 1983, 705, 7543–7549, and references therein.

    Article  Google Scholar 

  34. In this paper, metal-based orbitals are denoted σ, π, δ, and φ in correspondence with their symmetry about the principle molecular axis. Further, in dealing with jj-coupled orbitals, we adhere to the notation 1 (or 1*) and 1 for the lower and higher j-valued functions, respectively, and append a subscript referring to mj if necessary. Refer to reference 9a for a clear introduction to these and related concepts.

    Google Scholar 

  35. Bursten, B. E.; Casarin, M.; DiBella, S.; Fang, A.; Fragalà, I. L. Inorg. Chem. 1985, 24, 2169–2173.

    Article  CAS  Google Scholar 

  36. An An-H bond length of 2.0 Å was used in all the reported hydride results. Investigations of other bond lengths led to analogous conclusions.

    Google Scholar 

  37. Boerrigter, P. M.; Baerends, E. J.; Snijders, J. G. Chem. Phys. 1988, 122, 357–374.

    Article  CAS  Google Scholar 

  38. The separation into metal manifolds of distinct orbital character is not entirely clean, due to higher-order mixing between orbitals of the same symmetry type. This mixing only clouds the overall picture and is not of any qualitative import.

    Google Scholar 

  39. Rösch, N. Inorg. Chim. Acta 1984, 94, 297–299.

    Article  Google Scholar 

  40. Rösch, N.; Streitwieser, A. J. Am. Chem. Soc. 1983, 105, 7237–7240.

    Article  Google Scholar 

  41. Rösch, N.; Streitwieser, A. J. Organomet. Chem. 1978, 145, 195–200.

    Article  Google Scholar 

  42. Kot, W. K.; Shalimoff, G. V.; Edelstein, N. M.; Edelman, M. A.; Lappert, M. F. J. Am. Chem. Soc. 1988, 110, 986–987.

    Article  CAS  Google Scholar 

  43. Bond lengths and angles used in the amide calculations: An-N = 2.32 Å, N-H = 1.01 Å, An-N-H = 120.0°.

    Google Scholar 

  44. Stewart, J. L. Ph. D. Dissertation, University of California, Berkeley, 1988.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Schneider, W.F., Strittmatter, R.J., Bursten, B.E., Ellis, D.E. (1991). Relativistic DV-Xα Studies of Three-Coordinate Actinide Complexes. In: Labanowski, J.K., Andzelm, J.W. (eds) Density Functional Methods in Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3136-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3136-3_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7809-2

  • Online ISBN: 978-1-4612-3136-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics