Skip to main content

Impacts of Global Change on Composition of Arctic Communities: Implications for Ecosystem Functioning

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 124))

Abstract

As a result of the increasing atmospheric concentrations of radiatively active greenhouse gases, global temperatures are expected to rise (Houghton et al., 1990), particularly at high latitudes. Current global temperature trends are consistent with these predictions (Maxwell, 1992). Accompanying this climatic warming will be changes in growing season length, irradiance, permafrost depth, soil moisture, and nutrient availability (Chapin et al., 1992; Kane et al., 1992; Maxwell, 1992), although the exact nature and magnitude of these changes are less certain than those of temperature change. Other, more direct, human impacts on arctic ecosystems may be even more important than climatic change in the next few decades, including air pollution, disturbance associated with resource exploitation, and altered grazing regime due to changing patterns of reindeer husbandry and hunting. Together these global changes in environment are certain to affect arctic communities. The challenge is to predict how community composition will respond to these environmental changes and what will be the consequences for arctic ecosystems. In this chapter we present a framework for predicting how arctic plant communities will respond to global change and discuss the implications for ecosystem functioning. Detailed justification for this approach is provided elsewhere in general terms (Chapin, 1993; Hobbie et al., 1993; Shaver et al., 1992) and for tundra (Chapin et al., 1995).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Billings, W.D., and Mooney, H.A. 1968. The ecology of arctic and alpine plants. Biol. Rev.43: 481 – 529.

    Article  Google Scholar 

  • Bonan, G.B., Pollard, D., and Thompson, S.L. 1992. Effects of boreal forest vegetation on global climate. Nature359: 716 – 718.

    Article  Google Scholar 

  • Chapin, F.S., III. 1980. The mineral nutrition of wild plants. Annu. Rev. Ecol. System.11: 233 – 260.

    Article  CAS  Google Scholar 

  • Chapin, F.S., III. 1993. Functional role of growth forms in ecosystem and global processes. In: Ehleringer, J.R., and Field, C.B. (eds.), Scaling Physiological Processes: Leaf to Globe(pp. 287 – 312 ). San Diego: Academic Press.

    Google Scholar 

  • Chapin, F.S., III, and Shaver, G.R. 1985a. Arctic. In: Chabot, B.F., and Mooney, H.A. (eds.), Physiological Ecology of North America(pp. 16 – 40 ). New York: Chapman and Hall.

    Google Scholar 

  • Chapin, F.S., III, and Shaver, G.R. 1985b. Individualistic growth response of tundra plant species to environmental manipulations in the field. Ecology66: 564 – 576.

    Article  Google Scholar 

  • Chapin, F.S., III, and Shaver, G.R. 1988. Differences in carbon and nutrient fractions among arctic growth forms. Oecologia77: 506 – 514.

    Article  Google Scholar 

  • Chapin, F.S., III, McKendrick, J.D., and Johnson, D.A. 1986. Seasonal changes in carbon fractions in Alaskan tundra plants of differing growth form: Implications for herbivores. J. Ecol.74: 707 – 731.

    Article  CAS  Google Scholar 

  • Chapin, F.S., III, Fetcher, N., Kielland, K., Everett, K.R., and Linkins, A.E. 1988. Productivity and nutrient cycling of Alaskan tundra: Enhancement by flowing soil water. Ecology69: 693 – 702.

    Article  Google Scholar 

  • Chapin, F.S., III, Jefferies, R.L., Reynolds, J.F., Shaver, G.R., and Svoboda, J. (eds.) 1992. Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective. San Diego: Academic Press.

    Google Scholar 

  • Chapin, F.S., III, Hobbie, S.E., Bret-Harte, M.S., and Bonan, G. 1995. Causes and consequences of plant functional diversity in arctic ecosystems. In: Chapin, F.S., III, and Korner, C. (eds.), Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences(pp. 225 – 237 ). Berlin: Springer-Verlag.

    Google Scholar 

  • Chapin, F.S., III, Shaver, G.R., Giblin, A.E., Nadelhoffer, K.G., and Laundre, J.A. 1995. Response of arctic tundra to experimental and observed changes in climate. Ecology76: 694 – 711.

    Article  Google Scholar 

  • Clymo, R.S., and Hayward, P.M. 1982. The ecology of Sphagnum. In: Smith, A.J.E. (eds.), Bryophyte Ecology(pp. 229 – 289 ). London: Chapman and Hall.

    Google Scholar 

  • Davis, M.B. 1981. Quaternary history and the stability of forest communities. In: West, D.C., Shugart, H.H., and Botkin, D.B. (eds.), Forest Succession: Concepts and Applications(pp. 132 – 153 ). New York: Springer-Verlag.

    Google Scholar 

  • Gersper, P.L., Alexander, V., Barkley, S. A., Barsdate, R.J., and Flint, P.S. 1980. The soils and their nutrients. In: Brown, J., Miller, P.C., Tieszen, L.L., and Bunnell, F.L. (eds.), An Arctic Ecosystem: The Coastal Tundra at Barrow, Alaska(pp. 219 – 254 ). Stroudsburg: Dowden, Hutchinson & Ross.

    Google Scholar 

  • Havström, M., Callaghan, T.V., and Jonasson, S. 1993. Differential growth responses of Cassiope tetragona, an arctic dwarf-shrub, to environmental perturbations among three contrasting high- and sub-arctic sites. Oikos66: 389 – 402.

    Article  Google Scholar 

  • Hobbie, S.E. 1992. Effects of plant species on nutrient cycling. Trends Ecol. Evol.7: 336 – 339.

    Article  PubMed  CAS  Google Scholar 

  • Hobbie, S.E., Jensen, D.B., and Chapin, F.S., III. 1993. Resource supply and disturbance as controls over present and future plant diversity. In: Schulze, E.-D., and Mooney, H.A. (eds.), Ecosystem Function of Biodiversity(pp. 385 – 407 ). Berlin: Springer-Verlag.

    Google Scholar 

  • Houghton, J.T., Jenkins, G.J., and Ephraums, J.J. (eds.) 1990. Climate change: The IPCC Scientific Assessment. Cambridge: Cambridge University Press.

    Google Scholar 

  • Johnson, L.C., and Damman, A.W.H. 1991. Species controlled Sphagnumdecay on a South Swedish raised bog. Oikos61: 234 – 242.

    Article  Google Scholar 

  • Jonasson, S., Havstrom, M., Jensen, M., and Callaghan, T.V. 1993. In situmineralization of nitrogen and phosphorus of arctic soils after perturbations simulating climate change. Oecologia95: 179 – 186.

    Google Scholar 

  • Kane, D.L., Hinzman, L.D., Woo, M., and Everett, K.R. 1992. Arctic hydrology and climate change. In: Chapin, F.S., III, Jefferies, R.L., Reynolds, J.F., Shaver, G.R., and Svoboda, J. (eds.), Arctic Ecosystems in a Changing Climate: An Ecophysi- ological Perspective(pp. 35 – 57 ). San Diego: Academic Press.

    Google Scholar 

  • Maxwell, B. 1992. Arctic Climate: Potential for Change Under Global Warming. In: Chapin, F.S., III, Jefferies, R.L., Reynolds, J.F., Shaver, G.R., and Svoboda, J. (eds.), Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective(pp. 11–34). San Diego: Academic Press.

    Google Scholar 

  • Nadelhoffer, K.J., Giblin, A.E., Shaver, G.R., and Laundre, J.A. 1991. Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology72: 242 – 253.

    Article  Google Scholar 

  • Oberbauer, S., and Miller, P.C. 1982. Growth of Alaskan tundra plants in relation to water potential. Holarctic Ecol. 5: 194 – 199.

    Google Scholar 

  • Oechel, W.C., and Billings, W.D. 1992. Effects of global change on the carbon balance of arctic plants and ecosystems. In: Chapin, F.S., III, Jefferies, R.L., Reynolds, J.F., Shaver, G.R., and Svoboda, J. (eds.), Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective(pp. 139 – 168 ). San Diego: Academic Press.

    Google Scholar 

  • Romer, M.J., Cummins, W.R., and Svoboda, J. 1983. Productivity of native and temperate “crop” plants in the Keewatin District, N.W.T. Nat. Can.110: 85 – 93.

    Google Scholar 

  • Shaver, G.R. 1981. Mineral nutrition and leaf longevity in an evergreen shrub, Ledum palustressp. decumbens. Oecologia49: 362 – 365.

    Article  Google Scholar 

  • Shaver, G.R. 1986. Woody stem production in Alaskan tundra shrubs. Ecology56: 401 – 110.

    Article  Google Scholar 

  • Shaver, G.R., and Billings, W.D. 1975. Root production and root turnover in a wet tundra ecosystem, Barrow, Alaska. Ecology56: 401 – 410.

    Article  Google Scholar 

  • Shaver, G.R., and Chapin, F.S., III. 1980. Response to fertilization by various plant growth forms in an Alaskan tundra: Nutrient accumulation and growth. Ecology61: 662 – 675.

    Article  CAS  Google Scholar 

  • Shaver, G.R., and Chapin, F.S., III. 1986. Effect of fertilizer on production and biomass of tussock tundra, Alaska, U.S.A. Arctic Alpine Res. 18: 261 – 268.

    Article  Google Scholar 

  • Shaver, G.R., and Chapin, F.S., III. 1991. Production: biomass relationships and element cycling in contrasting arctic vegetation types. Ecol. Monogr.61: 1 – 31.

    Article  Google Scholar 

  • Shaver, G.R., and Melillo, J.M. 1984. Nutrient budgets of marsh plants: Efficiency concepts and relation to availability. Ecology65: 1491 – 1510.

    Article  Google Scholar 

  • Shaver, G.R., Billings, W.D., Chapin, F.S., III, Giblin, A.E., Nadelhoffer, K.J., Oechel, W.C., and Rastetter, E.B. 1992. Global change and the carbon balance of arctic ecosystems. Bioscience61: 415 – 435.

    Google Scholar 

  • Shaver, G.R., Giblin, A.E., Nadelhoffer, K.J., and Rastetter, E.B. 1995. Plant functional types and ecosystem change in arctic tundras. In: Smith, T., Shugart, H.H.,and Woodward, F.I. (eds.), Plant Functional Types. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tissue, D.T., and Oechel, W.C. 1987. Response of Eriophorum vaginatumto elevated C02 and temperature in the Alaskan tussock tundra. Ecology68: 401 – 410.

    Article  Google Scholar 

  • Warren Wilson, J. 1966. An analysis of plant growth and its control in arctic environments. Ann. Bot.30: 383 – 482.

    Google Scholar 

  • Webber, P.J. 1978. Spatial and temporal variation of the vegetation and its productivity, Barrow, Alaska. In: Tieszen, L.L (ed.), Vegetation and Production Ecology of an Alaskan Arctic Tundra(pp. 37 – 112 ). New York: Springer-Verlag.

    Google Scholar 

  • Whittaker, R.H. 1953. A consideration of climax theory: The climax as a population and pattern. Ecol. Monogr.23: 41 – 78.

    Article  Google Scholar 

  • Wookey, P.A., Parsons, A.N., Welker, J.M., Potter, J.A., Callaghan, T.V., Lee, J.A., and Press, M.C. 1993. Comparative responses of phenology and reproductive development to simulated environmental change in subarctic and high arctic plants. Oikos67: 490 – 502.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Chapin, F.S., Hobbie, S.E., Shaver, G.R. (1997). Impacts of Global Change on Composition of Arctic Communities: Implications for Ecosystem Functioning. In: Oechel, W.C., et al. Global Change and Arctic Terrestrial Ecosystems. Ecological Studies, vol 124. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2240-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2240-8_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7468-1

  • Online ISBN: 978-1-4612-2240-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics