Skip to main content

The Recommended Dietary Allowance for Calcium Is Unknown in Young Healthy Adults

  • Chapter
  • 126 Accesses

Part of the book series: Proceedings in the Serono Symposia USA Series ((SERONOSYMP))

Abstract

Bone is the major reservoir for calcium, accounting for 99% of total body calcium. The skeleton contains about 25 g of elemental calcium at birth, and this increases 40-fold by the time skeletal maturity is reached. Skeletal losses of calcium occur in the elderly, particularly in women in the years following menopause, and is causally related to the increasing incidence of fragility fractures with age. Women with hip fracture may have lost 50% of total body calcium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Truswell AS, Irwin T, Beaton GH, et al. Recommended dietary intake around the world. Nutr Abstr Rev 1983; 53: 939–1015.

    Google Scholar 

  2. Food and Agricultural Organisation and World Health Organisation. In: Calcium requirements: report of an expert group, Rome, May 23–30, 1961. WHO Technical Report Series, No. 23, 1962.

    Google Scholar 

  3. Heaney RP. Calcium intake, requirement and bone mass in the elderly. J Lab Clin med 1982; 100: 309–12.

    PubMed  CAS  Google Scholar 

  4. Heaney RP, Gallacher JC, Johnston CC, Neer R, Parfitt AM, Whedon GD. Calcium nutrition and bone health in the elderly. Am J Clin Nutr 1982; 36: 986–1013.

    PubMed  CAS  Google Scholar 

  5. Nordin BEC, Morris HA. The calcium deficiency model for osteoporosis. Nutr Rev 1989; 47: 65–72.

    Article  PubMed  CAS  Google Scholar 

  6. Anderson JJB. Dietary calcium and bone mass through the life cycle. Nutr Today 1990; 25: 9–14.

    Article  Google Scholar 

  7. Nordin BEC, Heaney RP. Calcium supplementation of the diet: justified by the present evidence. BMJ 1990; 300: 1056–9.

    Article  PubMed  CAS  Google Scholar 

  8. National Institutes of Health. Osteoporosis: consensus conference. JAMA 1984; 252: 799–802.

    Article  Google Scholar 

  9. Kanis JA, Passmore R. Calcium supplementation of the diet. BMJ 1989;298:137–40; 205–8; 673–4.

    Google Scholar 

  10. Kanis JA, Passmore R. Calcium supplementation of the diet. BMJ 1990; 300: 1523.

    Article  PubMed  CAS  Google Scholar 

  11. Stevenson JC, Lees B, Cust MP, Ganger KF. Determinants of bone density in normal women: risk factors for future osteoporosis. BMJ 1989; 298: 924–8.

    Article  PubMed  CAS  Google Scholar 

  12. Kanis JA, Adami S. Bone loss in the elderly. Osteoporos Int 1994; 4: 59–65.

    Article  PubMed  Google Scholar 

  13. Kanis JA. Requirements of calcium for optimal skeletal health. Calcif Tissue Int 1991;49 Suppl:S33–41.

    Article  PubMed  Google Scholar 

  14. Heaney RP. Calcium. In: Kanis JA, ed. Progress in basic and clinical pharmacology. Basel: Karger, 1990: 28–54.

    Google Scholar 

  15. Heaney RP. Nutritional factors in osteoporosis. Ann Rev Nutr 1993; 13: 287–316.

    Article  CAS  Google Scholar 

  16. Barrett-Connor E. The RDA for calcium in the elderly: too little too late. Calcif Tissue Int 1989; 44: 303–7.

    Article  PubMed  CAS  Google Scholar 

  17. Francis RM. Calcium’s role in preventing and treating osteoporosis. Geriatr Med 1989; 19: 21–6.

    Google Scholar 

  18. National Osteoporosis Society. Calcium. In: Recommended daily allowances. Bath: NOS Publication, 1990.

    Google Scholar 

  19. Parfitt AM. The physiologic and clinical significance of bone histomorphometric data. In: Recker R, ed. Bone histomorphometry techniques. Boca Ration, FL: CRC Press, 1983: 143–223.

    Google Scholar 

  20. Pettifor JM, Marie PJ, Sly MR, du Bruyn DB, Ross F, Isdale JM, et al. The effect of differing dietary calcium and phosphorus contents on mineral metabolism and bone histomorphometry in young vitamin D-replete baboons. Calcif Tissue Int 1984; 36: 668–76.

    Article  PubMed  CAS  Google Scholar 

  21. Cundy TC, Kanis JA, Heynen G, Earnshaw M, Clemens TL, O’Riordan JLH, et al. Failure to heal vitamin D-deficient rickets and suppress secondary hyperthyroidism with conventional doses of 1,25-dihydroxyvitamin D3. BMJ 1982; 284: 883–5.

    Article  PubMed  CAS  Google Scholar 

  22. Kooh SW, Fraser D, Reilly BJ, Hamilton JR, Gall DG, Bell L. Rickets due to calcium deficiency. N Engl J Med 1977; 297: 1264–6.

    Article  PubMed  CAS  Google Scholar 

  23. Parfitt AM. Morphological basis of bone mineral measurements: transient and steady state effects of treatment in osteoporosis. Miner Electrolyte Metab 1980; 4: 273–87.

    Google Scholar 

  24. Nagant de Deuxchaisnes C, Krane SM. Hypoparathyroidism. In: Avioli LV, Krane SM, eds. Metabolic bone disease. New York: Academic Press, 1978: 218–445.

    Google Scholar 

  25. Kalu DN, Masoro EJ. Undernutrition as a modulator of general and bone aging in the rat. In: Simmons DJ, ed. Nutrition and bone development, Chapter 4. Oxford: Oxford University Press, 1990: 93–113.

    Google Scholar 

  26. Nordin BEC, Marshall DH. Dietary requirements for calcium. In: Nordin DEC, ed. Calcium in human biology. Berlin: Springer-Verlag 1988; 447–71.

    Google Scholar 

  27. Kanis JA. Treatment of osteoporotic fracture. Lancet 1984;i:27–33.

    Article  Google Scholar 

  28. Malm OJ. Calcium requirement and adaptation in adult men. Scand J Clin Lab Invest 1958;10 Suppl 36: 1–290.

    PubMed  CAS  Google Scholar 

  29. Yano K, Heilbrun LK, Wasnich RD, Handin JH, Vogel JM. The relationship between diet and bone mineral content of multiple skeletal sites in elderly Japanese-American men and women living in Hawaii. Am J Clin Nutr 1985; 42: 877–88.

    PubMed  CAS  Google Scholar 

  30. Hansen MA, Overgaard K, Riis BJ, Christiansen C. Potential risk factors for development of postmenopausal osteoporosis examined over a 12 year period. Osteoporos Int 1991; 1: 95–102.

    Article  PubMed  CAS  Google Scholar 

  31. Anderson JJB, Tylaysky FA. Diet and osteopenia in elderly caucasian women. In: Christiansen C, Arnaud CD, Nodin BEC, Parfitt AM, Peck WA, Riggs BL, eds. Osteoporosis. Copenhagen: Glostrup Hospital 1984: 299–303.

    Google Scholar 

  32. Nordin BEC. International patterns of osteoporosis. Clin Orthop 1966; 44: 17–30.

    Google Scholar 

  33. Holbrook TL, Barrett-Connor E, Wingard DL. Dietary calcium intake and risk of hip fracture: 14 years prospective population study. Lancet 1988;ii:1046–9.

    Article  Google Scholar 

  34. Kamiyama S, Kobayashi S, Abe S, Takahashi E, Wakamatsu E, Kurashina T. Osteoporosis prevalence and nutritional intake among the people in farm, fishing and urban districts. Tohoku J Exp Med 1972; 107: 387–94.

    Article  PubMed  CAS  Google Scholar 

  35. Kanders B, Dempster DW, Lindsay R. Interaction of calcium nutrition and physical activity on bone mass in young women. J Bone Miner Res 1988; 3: 145–9.

    Article  PubMed  CAS  Google Scholar 

  36. Matkovic V, Kostial K, Simonovic I, Buzina R, Broderec A, Nordin BEC. Bone status and fracture rates in two regions of Yugoslavia. Am J Clin Nutr 1979; 32: 540–9.

    PubMed  CAS  Google Scholar 

  37. Murphy S, Khaw KT, May H, Compston JE. Milk consumption and bone mineral density in middle aged and elderly women. BMJ 1994; 308: 933–41.

    Google Scholar 

  38. Sandler RB, Slemenda CW, LaPorte RE. Postmenopausal bone density and mild consumption in childhood and adolescene. Am J Clin Nutr 1985; 42: 270–4.

    PubMed  CAS  Google Scholar 

  39. van Beresteijn ECH, van t’Hof MA, de Waard H, Raymakers JA, Duursma SA. Relation of axial bone mass to habitual calcium intake and to cortical bone loss in healthy early postmenopausal women. Bone 1990; 11: 7–13.

    Article  PubMed  Google Scholar 

  40. Cooper C, Barker DJP, Wickham C. Physical activity, muscle strength and calcium intake in fracture of the proximal femur in Britain. BMJ 1988; 297: 1443–5.

    Article  PubMed  CAS  Google Scholar 

  41. Donath A, Indermuhle P, Baud R. Influence of the national calcium and fluoride supply and of a calcium supplementation on bone mineral content of health population in Switzerland. In: Proceedings of an international conference on bone mineral measurement, Dept Health, Education and Welfare, DHEW Publication, 1975.

    Google Scholar 

  42. Garn SM, Rohmann CG, Wagner B, Davila GH, Ascoli W. Population similarities in the onset and rate of adult endosteal bone loss. Clin Orthop 1969; 65: 51–60.

    PubMed  CAS  Google Scholar 

  43. Hegsted DM. Mineral intake and bone loss. Federation Proceedings 1967; 26: 1747–54.

    PubMed  CAS  Google Scholar 

  44. Nilas L, Christiansen C, Rodbro P. Calcium supplementation and postmenopausal bone loss. BMJ 1984; 289: 1103–6.

    Article  PubMed  CAS  Google Scholar 

  45. Riggs BL, Wahner HW, Melton LJ, Richelson LS, Judd HL, O’Fallon WM. Dietary calcium intake and rates of bone loss in women. J Clin Invest 1987; 80: 979–82.

    Article  PubMed  CAS  Google Scholar 

  46. Smith RW, Frame B. Concurrent axial and appendicular osteoporosis. Its relation to calcium consumption. N Engl J Med 1965; 273: 73–8.

    Article  PubMed  Google Scholar 

  47. Smith RW, Rizek J. Epidemiological studies of osteoporosis in women of Puerto Rico and southwest Michigan with special reference of age, race, nationality and other associated findings. Clin Orthop 1966; 45: 31–48.

    PubMed  Google Scholar 

  48. Stevenson JC, Whitehead MI, Padwick M, Endacott JA, Sutton C, Banks LM, et al. Dietary intake of calcium and postmenopausal bone loss. BMJ 1988; 297: 15–7.

    Article  PubMed  CAS  Google Scholar 

  49. Wickham CAC, Walsh K, Cooper C, Barker DJP, Margetts BM, Morris J, et al. Dietary calcium, physical activity and risk of hip fracture: a prospective study. BMJ 1989; 299: 889–992.

    Article  PubMed  CAS  Google Scholar 

  50. Chalmers J, Ho KC. Geographical variations in senile osteoporosis. J Bone Joint Surg 1970; 52B: 667–75.

    CAS  Google Scholar 

  51. Smith EL, Raab DM. Osteoporosis and physical activity. Acta Med Scand 1986;711 Suppl: 149–56.

    CAS  Google Scholar 

  52. Kelly PJ, Pocock NA, Sambrook PN, Eisman JA. Dietary calcium, sex hormones and bone mineral density in men. BMJ 1990; 300: 1361–4.

    Article  PubMed  CAS  Google Scholar 

  53. Smith DM, Nance WE, Kang KW, Christian JC, Johnston CC. Genetic factors in determining bone mass. J Clin Invest 1973; 52: 2800–8.

    Article  PubMed  CAS  Google Scholar 

  54. Nilsson BE, Westlin NE. Bone density in athletes. Clin Orthop 1971; 77: 179–82.

    PubMed  CAS  Google Scholar 

  55. Garn SM, Pao EM, Rihl ME. Compact bone in Chinese and Japanese. Science 1964; 143: 1439–40.

    Article  PubMed  CAS  Google Scholar 

  56. Elffors L, Allander E, Kanis JA, Gullberg B, Johnell O, Dequeker J, et al. The variable incidence of hip fracture in Southern Europe. The MEDOS Study. Osteoporos Int 1994; 4: 253–63.

    Article  PubMed  CAS  Google Scholar 

  57. Valimaki MJ, Karkkainen M, Lamberg-Allardt C, Laitinen K, Alkava E, Heikkinen J, et al. Exercise, smoking and calcium intake during adolescence and early adulthood as determinants of peak bone mass. Cardiovascular Risk in Young Finns Study Group. BMJ 1994; 309: 230–5.

    PubMed  CAS  Google Scholar 

  58. Pettifor JM, Ross P, Moodley G, Shuenyane E. The effect of calcium supplementation on serum calcium phosphorus and alkaline phosphatase concentrations in a rural black population. Am J Clin Nutr 1981; 34: 2187–91.

    PubMed  CAS  Google Scholar 

  59. Bausal P, Rao R, Venkatachalam P, Goplan G. Effect of calcium supplementation on children in a rural community. Indian J Med Res 1964; 52: 219–23.

    Google Scholar 

  60. Kroger H, Kotaniemi A, Kroger L, Alhava E. Development of bone mass and bone density of the spine and femoral neck-a prospective study of 65 children and adolescents. Bone Miner 1993; 23: 171–82.

    Article  PubMed  CAS  Google Scholar 

  61. Luyken R, Luyken-Koning FWM, Cambridge TH, Dohle T, Rosh R. Studies on the physiology of nutrition in Surinam. X. Protein metabolism and influence of extra calcium on the growth of and calcium metabolism in boarding school children. Am J Clin Nutr 1967; 20: 34–42.

    PubMed  CAS  Google Scholar 

  62. Leighton G, Clark ML. Milk consumption and the growth of school children. Lancet 1929;i:40–3.

    Article  Google Scholar 

  63. Aykroyd WR, Krishnan BG. Effect of calcium lactate on children in a nursery school. Lancet 1938;ii:153–5.

    Article  CAS  Google Scholar 

  64. Fehily AM, Coles JR, Evans WD, Elwood PC. Factors affecting bone density in young adults. Am J Clin Nutr 1992; 56: 579–86.

    PubMed  CAS  Google Scholar 

  65. Johnston CC, Miller JZ, Slemenda CW, Reister TK, Hui S, Christian JC, et al. Calcium supplementation and increases in bone mineral density iv children. N Engl J Med 1992; 327: 82–7.

    Article  PubMed  Google Scholar 

  66. Slemenda CW, Miller JZ, Reister TK, Hui SL, Johnston CC. Calcium supplementation enhances bone mineral accretion in growing children. J Bone Miner Res 1991;6 Suppl 1: 211.

    Google Scholar 

  67. Slemenda CW, Reister TK, Peacock M, Johnston CC. Bone growth in children following the cessation of calcium supplementation. J Bone Miner Res 1993;8 Suppl 1:149 (abstract 151).

    Google Scholar 

  68. Lloyd T, Andon MB, Rollings N, Martel JK, Landis JR, Demers LM, et al. Calcium supplementation and bone mineral density in adolescent girls. JAMA 1993; 270: 841–4.

    Article  PubMed  CAS  Google Scholar 

  69. Lloyd T, Chinchilli V, Rollings N, et al. Bone acquisition in adolescent girls: the effect of starting calcium supplementation at age 12 or age 14. In: Ringe EJF, Elvins DM, Bhalla AK, eds. Current research in osteoporosis in bone mineral measurements, III. London: British Institute of Radiology, 1994: 82–3

    Google Scholar 

  70. Harrison M, Fraser R, Mullan B. Calcium metabolism in osteoporosis. Lancet 1961;i:1015–19.

    Article  Google Scholar 

  71. Heaney RP, Recker RR, Saville PD. Calcium balance and calcium requirement in middle-aged women. Am J Clin Nutr 1977; 30: 1603–11.

    PubMed  CAS  Google Scholar 

  72. Heaney RP, Recker RR, Saville PD. Menopausal changes in calcium balance perfomance. J Lab Clin Med 1977; 92: 953–63.

    Google Scholar 

  73. Heaney RP, Recker RR, Saville PD. Menopausal changes in bone remodelling. J Lab Clin Med 1978; 9: 964–70.

    Google Scholar 

  74. Nordin BEC. Osteoporosis and calcium deficiency. Proc Nutr Soc 1960; 19: 129–37.

    Article  PubMed  CAS  Google Scholar 

  75. Nordin BEC. Nutritional considerations. In: Nordin BEC, ed. Calcium, phosphate and magnesium metabolism. Edinburgh: Churchill Livingston, 1976: 1–35.

    Google Scholar 

  76. Nordin BEC, Polley KY, Need AG, Morris HA, Marshall D. The problem of calcium requirement. Am J Clin Nutr 1987; 45: 1295–304.

    PubMed  CAS  Google Scholar 

  77. Whedon GD. Effects of high calcium intakes on bone, blood, and soft tissue; relationship of calcium intake to balance in osteoporosis. Federation Proc 1959; 18: 1112–18.

    CAS  Google Scholar 

  78. Matkovic V. Calcium metabolism and calcium requirements during skeletal modelling and consolidation. Am J Clin Nutr 1991; 54: 245–60.

    Google Scholar 

  79. Kanis JA. The nutritional requirements for calcium derived from balance studies: fact or artefact? In: Christiansen C, Overgaard K, eds. Osteoporosis 1990. Copenhagen: Osteopress, 1990: 341–2.

    Google Scholar 

  80. Cochran WG. Long term agricultural experiments. J R Statist Soc 1939;6 Suppl:104.

    Google Scholar 

  81. Isaksson B, Sjogren BA. A critical evaluation of the calcium balance technic. I. Variation in fecal output. Metabolism 1967; 16: 295–302.

    Article  PubMed  CAS  Google Scholar 

  82. Selby PL. Calcium requirement—a reappraisal of the methods used in its determination and their application to patients with osteoporosis. Am J Clin Nutr 1994; 60: 944–8.

    PubMed  CAS  Google Scholar 

  83. Mitchell HH. The dietary requirements of calcium and its significance. In: Actualités scientifiques et industrielles, 18. Paris: Hermann and Company, 1939.

    Google Scholar 

  84. Charles P, Taagehoj Jensen F, Mosekilde L, Hvid Hansen H. Calcium metabolism evaluated by 47Ca kinetics: estimation of dermal calcium loss. Clin Sci 1983; 65: 415–22.

    PubMed  CAS  Google Scholar 

  85. Peacock M. Estimates for requirement of calcium in growth and development. In: Burckhardt P, Heaney RP, eds. Nutritional aspects of osteoporosis, Serono Symposia Publication. New York: Raven Press, 1991: 49–65.

    Google Scholar 

  86. Schaafsma G. The scientific basis of recommended dietary allowances for calcium. J Intern Med 1992; 231: 187–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kanis, J.A. (1998). The Recommended Dietary Allowance for Calcium Is Unknown in Young Healthy Adults. In: Burckhardt, P., Dawson-Hughes, B., Heaney, R.P. (eds) Nutritional Aspects of Osteoporosis. Proceedings in the Serono Symposia USA Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2228-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2228-6_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7463-6

  • Online ISBN: 978-1-4612-2228-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics