Skip to main content

Dietary Xylitol Protects Against Osseal Changes in Experimental Osteoporosis

  • Chapter
Nutritional Aspects of Osteoporosis

Abstract

Xylitol is a five-carbon polyalcohol, pentitol, which is widely distributed in nature. Most fruits, berries, and plants contain xylitol, the richest natural sources being plums, strawberries, raspberries, cauliflower, and endives (1). Considerable amounts of xylitol also occur as an intermediate of the mammalian carbohydrate metabolism. In the human body 5–15 grams of xylitol is formed daily (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Washüttl J, Reiderer P, Bancher E. A qualitative and quantitative study of sugar-alcohols in several foods. J Food Sci 1973; 38: 1262–3.

    Article  Google Scholar 

  2. Hollman S, Touster O. Non-glycolytic pathways of metabolism of glucose. New York: Academic Press, 1964: 276.

    Google Scholar 

  3. Mäkinen KK. Biochemical principles of the use of xylitol in medicine and nutrition with special consideration of dental aspects. Experientia 1978;30 Suppl: 1–160.

    Google Scholar 

  4. Moskowitz HR. The sweetness and pleasantness of sugars. Am J Psychol 1971; 84: 387–405.

    Article  PubMed  CAS  Google Scholar 

  5. Lang K. Xylit, Stoffwechsel und klinische Verwendung. Klin Wochenschr 1971; 49: 233–45.

    Article  PubMed  CAS  Google Scholar 

  6. Förster H. Comparative metabolism of xylitol, sorbitol and fructose. In: Sipple HL, McNutt KW, eds. Sugars in nutrition. New York: Academic Press, 1974: 259.

    Google Scholar 

  7. Mäkinen KK, Scheinin A. Turku sugar studies. VI. The administration of the trial and the control of the dietary regimen. Acta Odontol Scand 1975;33 Suppl 70: 105–27.

    Google Scholar 

  8. Hämäläinen MM, Mäkinen KK, Parviainen MT, Koskinen T. Peroral xylitol in-creases intestinal calcium absorption in the rat independently of vitamin D action. Miner Electrolyte Metab 1985; 11: 178–81.

    PubMed  Google Scholar 

  9. Pansu D, Chapuy MC, Milani M, Bellaton C. Transepithelial calcium transport enhanced by xylose and glucose in the rat jejunal ligated loop. Calcif Tissue Res 1976; 21: 45–52.

    Article  PubMed  Google Scholar 

  10. Angyal SJ. Complexing of polyols with cations. Tetrahedron 1974; 30: 1695–702.

    Article  CAS  Google Scholar 

  11. Froesch ER, Jakob A. The metabolism of xylitol. In: Sipple HL, McNutt KW, eds. Sugars in nutrition. New York: Academic Press, 1974: 241–58.

    Google Scholar 

  12. Georgieff M, Moldanuer LL, Bristrian BR, Blackburn GL. Xylitol on energy source for intravenous nutrition after trauma. J Parenter Enteral Nutr 1985; 9: 199–209.

    Article  CAS  Google Scholar 

  13. Lehninger AL, Vercesi A, Bababunmi EA. Regulation of Cat’ release from mitochondria by the oxidation-reduction state of pyridine nucleotides. Proc Natl Acad Sci USA 1978; 75: 1690–4.

    Article  PubMed  CAS  Google Scholar 

  14. Shapiro IM, Golub EE, Kakuta S, Hazelgrove J, Havery J, Chance B, et al. Initiation of endochondral calcification is related to changes in the redox state of hypertrophic chondrocytes. Science 1982; 217: 950–2.

    Article  PubMed  CAS  Google Scholar 

  15. Hernandez-Munoz R, Diaz-Munoz M, Chagoya de Sanchez V. Possible role of cell redox state on collagen metabolism in carbon tetrachloride-induced cirrhosis as evidenced by adenosine administration to rats. Biochim Biophys Acta 1994; 1200: 93–9.

    PubMed  CAS  Google Scholar 

  16. Knuuttila M, Svanberg M, Hämäläinen M. Alteration in bone composition related to polyol supplementation of the diet. Bone Miner 1989; 6: 25–31.

    Article  PubMed  CAS  Google Scholar 

  17. Svanberg M, Knuuttila M, Hämäläinen M. Citric acid concentration compared to serum parathyroid hormone, 1,25(OH)2D3 and calcitonin during dietary Ca deficiency and rehabilitation enhanced with xylitol in rats. Miner Electrolyte Metab 1993; 19: 103–8.

    PubMed  CAS  Google Scholar 

  18. Svanberg M, Knuuttila M. The effect of dietary xylitol on recalcifying and newly formed cortical long bone in rats. Calcif Tissue Int 1993; 53: 135–8.

    Article  PubMed  CAS  Google Scholar 

  19. Klein L, Jackman KV. Assay of bone resorption in vivo with 3H-tetracycline. Calcif Tissue Res 1976; 20: 275–90.

    Article  PubMed  CAS  Google Scholar 

  20. Frost HM. Tetracycline and fetal bone. Henry Ford Hosp Med Bull 1965; 13: 403–10.

    CAS  Google Scholar 

  21. Klein L, Wong KM, Simmelink JW. Biochemical and autoradiographic evaluation of bone turnover in prelabeled dogs and rabbits on normal and calcium deficient diets. Bone 1985; 6: 395–9.

    Article  PubMed  CAS  Google Scholar 

  22. Mattila P, Svanberg M, Knuuttila M. Diminished bone resorption in rats after oral xylitol administration: a dose-response study. Calcif Tissue Int 1995; 56: 232–5.

    Article  PubMed  CAS  Google Scholar 

  23. Svanberg M, Knuuttila M. Dietary xylitol retards bone resorption in rats. Miner Electrolyte Metab 1994; 20: 153–7.

    PubMed  CAS  Google Scholar 

  24. Kalu DN. The ovariectomized rat model of postmenopausal bone loss. Bone Miner 1991; 15: 175–92.

    Article  PubMed  CAS  Google Scholar 

  25. Svanberg M, Knuuttila M. Dietary xylitol prevents ovariectomy induced changes of bone inorganic fraction in rats. Bone Miner 1994; 26: 81–8.

    Article  PubMed  CAS  Google Scholar 

  26. Svanberg M, Mattila P, Knuuttila M. Dietary xylitol retards the ovariectomy-induced increase of bone turnover in rats. Calcif Tissue Int 1997; 60: 462–6.

    Article  PubMed  CAS  Google Scholar 

  27. Riffs B, Thomsen K, Christiansen C. Does calcium supplementation prevent postmenopausal bone loss? A double-blind controlled study. N Engl J Med 1987; 316: 173–7.

    Article  Google Scholar 

  28. Melton LJ, III, Wahner HW, Richelson LS, O’Fallon WM, Riggs BL. Osteoporosis and the risk of hip fracture. Am J Epidemiol 1986; 124: 254–61.

    PubMed  Google Scholar 

  29. Strömberg L, Dalen N. Experimental measurement of maximal torque capacity of long bones. Acta Orthop Scand 1976; 47: 257–63.

    Article  PubMed  Google Scholar 

  30. Danielsen CC, Mosekilde L, Andreassen T. Long-term effect of orchidectomy on cortical bone from rat femur: bone mass and mechanical properties. Calcif Tissue Int 1992; 50: 169–74.

    Article  PubMed  CAS  Google Scholar 

  31. Hou JCH, Zernicke RF, Barnard J. Experimental diabetes, insulin treatment, and femoral neck morphology and biomechanics in rats. Clin Orthop 1991; 264: 278–85.

    PubMed  Google Scholar 

  32. Mäkinen KK. Long-term tolerance of healthy human subjects to high amounts of xylitol and fructose: general and biochemical findings. In: Ritzel G, Brubacher G, eds. Monosaccharides and polyalcohols in nutrition, therapy and dietetics. Bern: Huber, 1976: 92.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Mattila, P.T., Svanberg, M.J., Knuuttila, M.L.E. (1998). Dietary Xylitol Protects Against Osseal Changes in Experimental Osteoporosis. In: Burckhardt, P., Dawson-Hughes, B., Heaney, R.P. (eds) Nutritional Aspects of Osteoporosis. Proceedings in the Serono Symposia USA Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2228-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2228-6_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7463-6

  • Online ISBN: 978-1-4612-2228-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics