Skip to main content

Hearing in Birds and Reptiles

  • Chapter

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 13))

Abstract

The comparative hearing of birds and reptiles should always be considered together. It is clear from the vertebrate fossil record that birds and reptiles split over 200 million years ago from the diapsid reptiles of the early Triassic period (Fedducia 1980; Carroll 1987). Because of this common ancestry, there is considerable similarity between the hearing organs of modern day birds and reptiles, especially the Crocodilia (Manley and Gleich 1991; Manley, Chapter 4). However, comparisons between reptiles and birds are difficult for a number of reasons. In reptiles, the auditory anatomy is extraordinarily diverse. While this presents investigators with excellent opportunities to understand the relation between form and function, direct data on the behavior of hearing in reptiles are almost nonexistent. This leaves our understanding of hearing in this group of vertebrates entirely based on indirect measures from anatomy and physiology. Thus, any comparison of hearing between reptiles and birds is somewhat unbalanced because it also involves a comparison across methodologies: hearing estimates from anatomical and physiological data in the case of reptiles along with behavioral estimates of hearing capabilities in birds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleksandrov LI, Dmitrieva LP (1992) Development of auditory sensitivity of altricial birds: absolute thresholds of the generation of evoked potentials. Neurosci Behav Physiol 22:132–137.

    Article  PubMed  CAS  Google Scholar 

  • Amagai S, Dooling RJ, Formby C, Forrest TG (1997) Discrimination of silent temporal gaps in sinusoidal markers by the budgerigar (Melopsittacus undulatus). J Acoust Soc Am 101:3124.

    Article  Google Scholar 

  • Amagai S, Dooling RJ, Shamma S, Kidd TL, Lohr B (1999) Detection of modulation in spectral envelopes by budgerigars (Melopsittacus undulates). J Acoust Soc Am 105:2029–2035.

    Article  PubMed  CAS  Google Scholar 

  • Art JJ, Fettiplace R (1984) Efferent desensitization of auditory nerve fibre responses in the cochlea of the turtle Pseudemys scripta elegans. J Physiol 356:507–523.

    PubMed  CAS  Google Scholar 

  • Bacon SP, Viemeister NF (1985) Temporal modulation transfer functions in normal-hearing and hearing-impaired listeners. Audiology 24:117–134.

    Article  PubMed  CAS  Google Scholar 

  • Banta P, Pepperberg I (1995) Learned English vocalizations as a model for studying budgerigar (Melopsittacus undulatus) warble song. In: Burrows M, Matheson T, Newland PL, Schuppe H (eds) Nervous Systems and Behavior Proceedings of the 4th International Congress of Neuroethology. New York: Thieme, p. 335.

    Google Scholar 

  • Barton LA, Bailey ED, Gatehouse RW (1984) Audibility curve of bobwhite quail (Colinus virginianus). J Auditory Res 24:87–97.

    CAS  Google Scholar 

  • Békésy GV (1960) Experiments in Hearing. New York: McGraw-Hill.

    Google Scholar 

  • Bilsen FA, ten Kate JH, Buunen TJF, Raatgever J (1975) Responses of single units in the cochlear nucleus of the cat to cosine noise. J Acoust Soc Am 58:858–866.

    Article  PubMed  CAS  Google Scholar 

  • Brackenbury JH (1979) Power capabilities of the avian sound-producing system. J Exp Biol 78:163–166.

    Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bregman AS, Campbell J (1971) Primary auditory stream segregation and percep-tion of order in rapid sequences of tones. J Exp Psychol 89:244–249.

    Article  PubMed  CAS  Google Scholar 

  • Bremond JC (1968) Recherches sur la semantique et les elements vecteurs d’infor-mation dans les signaux acoustiques du rouge-gorge (Erithacus rubecula L.).Terre Vie 2:109–220.

    Google Scholar 

  • Bremond JC (1975) Specific recognition in the song of Bonelli’s warbler (Phylloscopus bonelli). Behaviour 58:99–116.

    Article  Google Scholar 

  • Brodkorb P (1971) Origin and evolution of birds. In: Farner DS, King JR, Parkes KC (eds) Avian Biology, Vol. 1. New York: Academic Press, pp. 19–55.

    Google Scholar 

  • Brown SD, Dooling RJ, O’Grady K (1988) Perceptual organization of acoustic stimuli by budgerigars (Melopsittacus undulatus): III Contact calls. J Comp Psychol 102:236–247.

    Article  PubMed  CAS  Google Scholar 

  • Buchfellner E, Leppelsack HJ, Klump GM, Hausler U (1989) Gap-detection in the starling (Sturnus vulgaris): I1: Coding of gaps by forebrain neurons. J Comp Physiol A 164:539–549.

    Article  Google Scholar 

  • Buus S, Klump GM, Gleich O, Langemann U (1995) An excitation-pattern model for the starling (Sturnus vulgaris). J Acoust Soc Am 98:112–124.

    Article  PubMed  CAS  Google Scholar 

  • Campbell HW (1969) The effects of temperature on the auditory sensitivity of lizards. Physiol Zool 42:183–210.

    Google Scholar 

  • Carroll RL (1987) Vertebrate Paleontology and Evolution. New York: WH Freeman.

    Google Scholar 

  • Cohen SM, Stebbins WC, Moody DB (1978) Audibility thresholds of the blue jay. Auk 95:563–568.

    Google Scholar 

  • Coles RB, Konishi M, Pettigrew JD (1987) Hearing and echolocation in the Australian grey swiftlet, Collocalia spodiopygia. J Exp Biol 129:365–371.

    Google Scholar 

  • Corwin JT (1992) Regeneration in the auditory system. Exp Neurol 115:7–12.

    Article  PubMed  CAS  Google Scholar 

  • Cotanche DA, Lee KH, Stone JS, Picard DA (1994) Hair cell regeneration in the bird cochlea following noise damage or ototoxic drug damage. Anat Embryol 189:1–18.

    Article  PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1980) The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. J Physiol 306:79–125.

    PubMed  CAS  Google Scholar 

  • Cynx J, Williams H, Nottebohm F (1990) Timbre discrimination in zebra finch (Taeniopygia guttata) song syllables. J Comp Psychol 104:303–308.

    Article  PubMed  CAS  Google Scholar 

  • Cynx J, Lewis R, Tavel B, Tse H (1998) Amplitude regulation of vocalizations in noise by a songbird, Taeniopygia guttata. Anim Behav 56:107–113.

    Article  PubMed  Google Scholar 

  • Dent ML, Dooling RJ (1998) Frequency difference limens in budgerigars (Melopsittacus undulatus) as a function of tone duration. Paper presented at Midwinter Meeting of the Association for Research in Otolaryngology, St Petersburg, FL.

    Google Scholar 

  • Dent ML, Larsen ON, Dooling RJ (1997) Free-field binaural unmasking in budgerigars (Melopsittacus undulatus). Behav Neurosci 111:590–598.

    Article  PubMed  CAS  Google Scholar 

  • Dent ML, Brittan-Powell EF, Dooling RJ, Pierce A (1997) Perception of synthetic /bal-/wa/ speech continuum by budgerigars (Melopsittacus undulatus). J Acoust Soc Am 102:1891–1897.

    Article  PubMed  CAS  Google Scholar 

  • Dent ML, Dooling RJ, Leek MR (1999) Perception of harmonic complexes in budgerigars (Melopsittacus undulatus). J Acoust Soc Am 105:1319.

    Article  Google Scholar 

  • Dent ML, Dooling RJ, Leek MR, Summers, V (1999) Masking by harmonic complexes with different phase spectra in budgerigars (Melopsittacus undulatus). Paper presented at Midwinter Meeting of the Association for Research in Otolaryngology, St Petersburg, FL.

    Google Scholar 

  • Dent ML, Klump GM, Schwenzfeier C (1999) Temporal modulation transfer functions in the barn owl (Tyto alba). Paper presented at Midwinter Meeting of the Association for Research in Otolaryngology, St Petersburg, FL.

    Google Scholar 

  • De Valois RL, De Valois KK (1988) Spatial Vision. New York: Oxford University Press.

    Google Scholar 

  • Divenyi PL, Danner WF (1977) Discrimination of time intervals marked by brief acoustic pulses of various intensities and spectra. Percept Psychophys 21:125–142.

    Article  Google Scholar 

  • Dooling RJ (1979) Temporal summation of pure tones in birds. J Acoust Soc Am 65:1058–1060.

    Article  PubMed  CAS  Google Scholar 

  • Dooling RJ (1980) Behavior and psychophysics of hearing in birds. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 261–288.

    Chapter  Google Scholar 

  • Dooling RJ (1982) Auditory perception in birds. In: Kroodsma DE, Miller EH (eds) Acoustic Communication in Birds, Vol 1. New York: Academic Press. pp. 95–130.

    Google Scholar 

  • Dooling RJ (1992a) Hearing in Birds. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 545–559.

    Chapter  Google Scholar 

  • Dooling RJ (1992b) Perception of speech sounds by birds. In: Cazals Y, Demany L, Horner K (eds) Advances in Biosciences: Auditory Physiology and Perception. London: Pergamon, pp. 407–413.

    Google Scholar 

  • Dooling RJ, Brown SD (1990) Speech perception by budgerigars (Melopsittacus undulatus): spoken vowels. Percept Psychophys 47:568–574.

    Article  PubMed  CAS  Google Scholar 

  • Dooling RJ, Haskell RJ (1978) Auditory duration discrimination in the parakeet (Melopsittacus undulatus). J Acoust Soc Am 63:1640–1642.

    Article  PubMed  CAS  Google Scholar 

  • Dooling RJ, Saunders JC (1975a) Hearing in the parakeet (Melopsittacus undula-tus): absolute thresholds, critical ratios, frequency difference limens, and vocalizations. J Comp Physiol 88:1–20.

    CAS  Google Scholar 

  • Dooling RJ, Saunders JC (1975b) Auditory intensity discrimination in the parakeet (Melopsittacus undulatus). J Acoust Soc Am 58:1308–1310.

    Article  CAS  Google Scholar 

  • Dooling RJ, Searcy MH (1979) The relation among critical ratios, critical bands, and intensity difference limens in the parakeet (Melopsittacus undulatus). Bull Psychon Soc 13:300–302.

    Google Scholar 

  • Dooling RJ, Searcy MH (1980b) Forward and backward auditory masking in the parakeet (Melopsittacus undulatus). Hearing Res 3:279–284.

    Article  CAS  Google Scholar 

  • Dooling RJ, Searcy MH (1981) Amplitude modulation thresholds for the parakeet (Melopsittacus undulatus). J Comp Physiol 143:383–388.

    Article  Google Scholar 

  • Dooling RJ, Searcy MH (1985a) Nonsimultaneous auditory masking in the budgerigar (Melopsittacus undulatus). J Comp Psychol 99:226–230.

    Article  CAS  Google Scholar 

  • Dooling RJ, Searcy MH (1985b) Temporal integration of acoustic signals by the budgerigar (Melopsittacus undulatus). J Acoust Soc Am 77:1917–1920.

    Article  CAS  Google Scholar 

  • Dooling RJ, Zoloth SR, Baylis JR (1978) Auditory sensitivity, equal loudness, temporal resolving power and vocalizations in the house finch (Carpodacus mexicanus). J Comp Physiol Psych 92:867–876.

    Article  CAS  Google Scholar 

  • Dooling RJ, Peters SS, Searcy MH (1979) Auditory sensitivity and vocalizations of the field sparrow (Spizella pusilla). Bull Psychon Soc 14:106–108.

    Google Scholar 

  • Dooling RJ, Okanoya K, Downing J, Hulse S (1986) Hearing in the starling (Sturnus vulgaris): absolute thresholds and critical ratios. Bull Psychon Soc 24: 462–464.

    Google Scholar 

  • Dooling RJ, Park TJ, Brown SD, Okanoya K, Soli SD (1987) Perceptual organization of acoustic stimuli by budgerigars (Melopsittacus undulatus) II: Vocal signals. J Comp Psychol 101:367–381.

    Article  PubMed  CAS  Google Scholar 

  • Dooling RJ, Okanoya K, Brown SD (1989) Speech perception by budgerigars (Melopsittacus undulatus): the voiced-voiceless distinction. Percept Psychophys 46:65–71.

    Article  PubMed  CAS  Google Scholar 

  • Dooling RJ, Best CT, Brown SD (1995) Discrimination of synthetic full-formant and sinewave /ra-la/ continua by budgerigars (Melopsittacus undulatus) and zebra finches (Taeniopygia guttata). J Acoust Soc Am 97:1839–1846.

    Article  PubMed  CAS  Google Scholar 

  • Dooling RJ, Ryals BM, Manabe K (1997) Recovery of hearing and vocal behavior after hair-cell regeneration. Proc Natl Acad Sci U S A 94:14206–14210.

    Article  PubMed  CAS  Google Scholar 

  • Durlach N, Colburn HS (1978) Binaural phenomena. In: Carterette C, Friedman MP (eds) Handbook of Perception, Vol. IV: Hearing. New York: Academic Press, pp. 365–466.

    Google Scholar 

  • Dyson ML, Klump GM, Gauger B (1998) Absolute hearing thresholds and critical masking ratios in the European barn owl: a comparison with other owls. J Comp Physiol A 182:695–702.

    Article  Google Scholar 

  • Eatock RA, Manley GA (1981) Auditory nerve fibre activity in the tokay gecko: II, temperature effect on tuning. J Comp Physiol A 142:219–226.

    Article  Google Scholar 

  • Eatock RA, Manley GA, Pawson L (1981) Auditory nerve fibre activity in the tokay gecko: I, implications for cochlear processing. J Comp Physiol A 142:203–218.

    Article  Google Scholar 

  • Falls JB (1963) Properties of bird song eliciting responses from territorial males. Proc Int Ornith Congr 13:359–371.

    Google Scholar 

  • Farabaugh SM, Dooling RJ (1996) Acoustic communication in parrots: laboratory and field studies of budgerigars, Melopsittacus undulatus. In: Kroodsma DE, Miller EH (eds) Ecology and Evolution of Acoustic Communication in Birds. Ithaca: Cornell University Press, pp. 97–117.

    Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Fay RR, Yost WA, Coombs S (1983) Psychophysics and neurophysiology of repetition noise processing in a vertebrate auditory system. Hear Res 12:31–55.

    Article  PubMed  CAS  Google Scholar 

  • Fedducia A (1980) The Age of Birds. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Fletcher H (1940) Auditory patterns. Rev Mod Phys 12:47–65.

    Article  Google Scholar 

  • Fletcher LE, Smith DG (1978) Some parameters of song important in conspecific recognition by gray catbirds. Auk 95:338–347.

    Google Scholar 

  • Formby C, Forrest TG (1991) Detection of silent temporal gaps in sinusoidal markers. J Acoust Soc Am 89:830–837.

    Article  PubMed  CAS  Google Scholar 

  • Formby C, Sherlock LP, Forrest TG (1996) An asymmetric Roex filter model for describing detection of silent temporal gaps in sinusoidal markers. Aud Neurosci 3:1–20.

    Google Scholar 

  • Gans C, Wever EG (1972) The ear and hearing in Amphisbaenia (Reptilia). J Exp Zool 179:17–34.

    Article  Google Scholar 

  • Gans C, Wever EG (1976) The ear and hearing in Sphenodon punctatus. Proc Natl Acad Sci U S A 73:4244–4246.

    Article  PubMed  CAS  Google Scholar 

  • Glasberg BR, Moore BCJ (1990) Derivation of auditory filter shapes from notched-noise data. Hear Res 47:103–138.

    Article  PubMed  CAS  Google Scholar 

  • Gleich O, Klump GM (1995) Temporal modulation transfer functions in the European starling (Sturnus vulgaris): II. Responses of auditory-nerve fibers. Hear Res 82:81–92.

    Article  PubMed  CAS  Google Scholar 

  • Goerdel-Leich A, Schwartzkopff J (1984) The auditory threshold of the pigeon (Columba livia) by heart-rate conditioning. Naturwiss 71:S98.

    Article  Google Scholar 

  • Gray L, Rubel EW (1985) Development of auditory thresholds and frequency difference limens in chickens. In: Gottlieb G, Krasnegor NA (eds) Measurement of Audition and Vision in the First Year of Postnatal Life: A Methodological Overview. Norwood NJ: Ablex, pp. 145–165.

    Google Scholar 

  • Greenewalt CH (1968) Bird Song: Acoustics and Physiology. Washington DC: Smithsonian Institute Press.

    Google Scholar 

  • Greenwood DD (1961a) Auditory masking and the critical band. J Acoust Soc Am 33:484–502.

    Article  Google Scholar 

  • Greenwood DD (1961b) Critical bandwidth and the frequency coordinates of the basilar membrane. J Acoust Soc Am 33:1344–1356.

    Article  Google Scholar 

  • Griffin DR (1954) Acoustic orientation in the oil bird, Steatornis. Proc Natl Acad Sci U S A 39:885–893.

    Google Scholar 

  • Gulick WL, Zwick H (1966) Auditory sensitivity of the turtle. Psychol Rec 16:47–53.

    Google Scholar 

  • Hall JW, Haggard MP, Fernandes MA (1984) Detection in noise by spectrotemporal pattern analysis. J Acoust Soc Am 76:50–56.

    Article  PubMed  CAS  Google Scholar 

  • Hamann I, Klump GM, Fichtel C, Langemann U (1999) CMR in a songbird studied with narrow-band maskers. Paper presented at Midwinter Meeting of the Association for Research in Otolaryngology, St Petersburg, FL.

    Google Scholar 

  • Harrison JB, Furumoto L (1971) Pigeon audiograms: comparison of evoked poten-tial and behavioral thresholds in individual birds. J Aud Res 11:3342.

    Google Scholar 

  • Hartline PH (1971a) Physiological basis for detection of sound and vibration in snakes. J Exp Biol 54:349–371.

    CAS  Google Scholar 

  • Hartline PH (1971b) Mid-brain responses of the auditory and somatic vibration systems in snakes. J Exp Biol 54:373–390.

    CAS  Google Scholar 

  • Hartline PH, Campbell HW (1969) Auditory and vibratory responses in the mid-brains of snakes. Science 163:1221–1223.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann WM, McAdams S, Smith BK (1990) Hearing a mistuned harmonic in an otherwise periodic complex tone. J Acoust Soc Am 88:1712–1724.

    Article  PubMed  CAS  Google Scholar 

  • Hashino E, Okanoya K (1989) Auditory sensitivity in the zebra finch (Poephila guttata castanotis). J Acoust Soc Jpn 10:1–2.

    Article  Google Scholar 

  • Hashino E, Sokabe M (1989) Hearing loss in the budgerigar (Melopsittacus undulates). J Acoust Soc Am 85:289–294.

    Article  PubMed  CAS  Google Scholar 

  • Hashino E, Sokabe M, Miyamoto K (1988) Frequency specific susceptibility to acoustic trauma in the budgerigar. J Acoust Soc Am 83:2450–2452.

    Article  PubMed  CAS  Google Scholar 

  • Hedges SB, Poling LL (1999) A molecular phylogeny of reptiles. Science 283: 998–1001.

    Article  PubMed  CAS  Google Scholar 

  • Heise GA (1953) Auditory thresholds in the pigeon. Amer J Psycho! 66:1–19.

    Article  CAS  Google Scholar 

  • Hienz MG, Goldstein MH Jr, Formby C (1996) Temporal gap detection thresholds in sinusoidal markers simulated with a multi-channel, multi-resolution model of the auditory periphery. Aud Neurosci 3:35–56.

    Google Scholar 

  • Hienz RD, Sachs MB (1987) Effects of noise on pure-tone thresholds in blackbirds (Agelaius phoeniceus and Molothrus ater) and pigeon (Columba livia). J Comp Psycho! 101:16–24.

    Article  CAS  Google Scholar 

  • Hienz RD, Sinnott JM, Sachs MB (1977) Auditory sensitivity of the redwing black-bird and the brown-headed cowbird. J Comp Physiol Psych 91:1365–1376.

    Article  Google Scholar 

  • Hienz RD, Sinnott JM, Sachs MB (1980) Auditory intensity discrimination in black-birds and pigeons. J Comp Physiol Psych 94:993–1002.

    Article  CAS  Google Scholar 

  • Hienz RD, Sachs MB, Sinnott JM (1981) Discrimination of steady-state vowels by blackbirds and pigeons. J Acoust Soc Am 70:699–706.

    Article  Google Scholar 

  • Hillier DA (1991) Auditory processing of sinusoidal spectral envelopes. Unpublished doctoral dissertation, Washington University, St. Louis, MO.

    Google Scholar 

  • Hirsh IJ (1971) Masking of speech and auditory localization. Audiology 10:110–114.

    Article  Google Scholar 

  • Hulse SH, Cynx J (1985) Relative pitch perception is constrained by absolute pitch in songbirds (Minus,Molothrus, Sturnus). J Comp Psycho! 99:176–196.

    Article  Google Scholar 

  • Hulse SH, Cynx J (1986) Interval and contour in serial pitch perception by a Passerine bird, the European starling (Sturnus vulgaris). J Comp Psycho! 100:215–228.

    Article  Google Scholar 

  • Hulse SH, MacDougall-Shackleton SA, Wisniewski AB (1997) Auditory scene analysis by songbirds: stream segregation of birdsong by European starlings (Sturnus vulgaris). J Comp Psychol 111:3–13.

    Article  PubMed  CAS  Google Scholar 

  • Kinchla J (1970) Discrimination of two auditory durations by pigeons. Percept Psychophys 8:299–307.

    Article  Google Scholar 

  • Kleunder KR, Diehl RL, Killeen PR (1987) Japanese quail can learn phonetic categories. Science 237:1195–1197.

    Article  Google Scholar 

  • Klinke R, Pause M (1980) Discharge properties of primary auditory fibres in Caiman crocodilus: comparisons and contrasts to the mammalian auditory nerve. Exp Brain Res 38:137–150.

    Article  PubMed  CAS  Google Scholar 

  • Klump GM (1996) Bird communication in the noisy world. In: Kroodsma DE, Miller EH (eds) Ecology and Evolution of Acoustic Communication in Birds. Ithaca, NY: Cornell University Press, pp. 321–338.

    Google Scholar 

  • Klump GM, Gleich O (1991) Gap detection in the European starling (Sturnus vulgaris). III. Processing in the peripheral auditory system. J Comp Physiol A 169:469–476.

    Article  Google Scholar 

  • Klump GM, Langemann U (1995) Comodulation masking release in a songbird. Hear Res 87:157–164.

    Article  PubMed  CAS  Google Scholar 

  • Klump GM, Maier EH (1989) Gap detection in the starling (Sturnus vulgaris), I: Psychophysical thresholds. J Comp Physiol 164:531–538.

    Article  Google Scholar 

  • Klump GM, Maier EH (1990) Temporal summation in the starling (Sturnus vulgaris). J Comp Psychol 104:94–100.

    Article  Google Scholar 

  • Klump GM, Okanoya K (1991) Temporal modulation transfer functions in the European starling (Sturnus vulgaris). Hear Res 52:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Klump GM, Kretzschmar E, Curio E (1986) The hearing of an avian predator and its avian prey. Behav Ecol Sociobiol 18:317–323.

    Article  Google Scholar 

  • Klump GM, Dooling RJ, Fay RR, Stebbins WC (1995) Methods in Comparative Psychoacoustics. Basel: Birkhauser Verlag.

    Google Scholar 

  • Klump GM, Schwenzfeier C, Dent ML (1998) Gap detection in the barn owl. Paper presented at Midwinter Meeting of the Association for Research in Otolaryngology, St Petersburg, FL.

    Google Scholar 

  • Konishi M (1969) Time resolution by single auditory neurons in birds. Nature 222:566–567.

    Article  PubMed  CAS  Google Scholar 

  • Konishi M (1970) Comparative neurophysiological studies of hearing and vocalizations on song birds. Z Vergl Physiol 66:257–272.

    Article  Google Scholar 

  • Konishi M (1973a) How the barn owl tracks its prey. Am Sci 61:414–424.

    Google Scholar 

  • Konishi M (1973b) Locatable and nonlocatable acoustic signals for barn owls. Am Nat 107:775–785.

    Article  Google Scholar 

  • Konishi M, Knudsen EI (1979) The oilbird: hearing and echolocation. Science 204:425–427.

    Article  PubMed  CAS  Google Scholar 

  • Köppl C, Manley GA (1992) Functional consequences of morphological trends in the evolution of lizard hearing organs. In: Fay RR, Popper AN, Webster DB (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 489–509.

    Chapter  Google Scholar 

  • Kreithen ML, Quine DM (1979) Infrasound detection by the homing pigeon: a behavioral audiogram. J Comp Physiol 129:1–4.

    Article  Google Scholar 

  • Kroodsma DE, Miller EH (1982) Acoustic Communication in Birds, Vol 2: Song Learning and Its Consequences. New York: Academic Press.

    Google Scholar 

  • Kroodsma DE, Miller EH (1996) Ecology and Evolution of Acoustic Communication in Birds. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Kuhl PK (1989) On babies, birds, modules, and mechanisms: a comparative approach to the acquisition of vocal communication. In: Dooling RJ, Hulse SH (eds) The Comparative Psychology of Audition. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 379–419.

    Google Scholar 

  • Kuhn A, Leppelsack H-J, Schwartzkopff J (1980) Measurement of frequency discrimination in the starling (Sturnus vulgaris) by conditioning of heart rate. Naturwiss 67:102.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn A, Muller CM, Leppelsack H-J, Schwartzkopff J (1982) Heart rate conditioning used for determination of auditory thresholds in the starling. Naturwiss 69:245–256.

    Article  PubMed  CAS  Google Scholar 

  • Lane HL, Tranel B (1971) The Lombard sign and the role of hearing in speech. J Speech Hear Res 14:677–709.

    Google Scholar 

  • Langemann U, Klump GM, Dooling RJ (1995) Critical bands and critical-ratio bandwidth in the European starling. Hear Res 84:167–176.

    Article  PubMed  CAS  Google Scholar 

  • Langemann U, Gauger B, Klump GM (1998) Auditory sensitivity in the great tit: perception of signals in the presence and absence of noise. Anim Behav 56:763–769.

    Article  PubMed  Google Scholar 

  • Lin JY, Dooling RJ, Dent ML (1997) Auditory filter shapes in the budgerigar (Melopsittacus undulatus) derived from notched-noise maskers. J Acoust Soc Am 101:31–25.

    Google Scholar 

  • Lin JY, Dooling RJ, Lohr B, Leek MR (1998) The temporal resolution of the avian auditory system. Paper presented at Midwinter Meeting of the Association for Research in Otolaryngology, St Petersburg, FL.

    Google Scholar 

  • Linzenbold A, Dooling RJ, Ryals BM (1993) A behavioral audibility curve for the Japanese quail (Coturnix coturnix japonica). Paper presented at Midwinter Meeting of the Association for Research in Otolaryngology, St Petersburg, FL.

    Google Scholar 

  • Lohr B, Dooling RJ (1998) Detection of changes in timbre and harmonicity in complex sounds by zebra finches (Taeniopygia guttata) and budgerigars (Melopsittacus undulatus). J Comp Psychol 112:36–47.

    Article  PubMed  CAS  Google Scholar 

  • Lohr B, Dooling RJ (1999) Hearing in the red-billed firefinch (Lagonosticta senegala): an estrildid finch with narrowband vocalizations. Paper Presented at Midwinter meeting of the Association for Research in Otolaryngology, St Petersburg, FL.

    Google Scholar 

  • Lynn GK, Small AM (1977) Interactions of backward and forward matching. J Acoust Soc Am 61:185–189.

    Article  PubMed  CAS  Google Scholar 

  • MacDougall-Shackleton SA, Hulse SH (1996) Concurrent absolute and relative pitch processing by European starlings (Sturnus vulgaris). J Comp Psychol 110:139–146.

    Article  Google Scholar 

  • MacDougall-Shackleton SA, Hulse SH, Gentner TQ, White W (1998) Auditory scene analysis by European starlings (Sturnus vulgaris): perceptual segregation of tone sequences. J Acoust Soc Am 103:3581–3587.

    Article  PubMed  CAS  Google Scholar 

  • Maier EH, Klump GM (1990) Auditory duration discrimination in the European starling (Sturnus vulgaris). J Acoust Soc Am 88:616–621.

    Article  PubMed  CAS  Google Scholar 

  • Maiorana VA, Schleidt WM (1972) The auditory sensitivity of the turkey. J Aud Res 12:203–207.

    Google Scholar 

  • Manabe K, Sadr El, Dooling RJ (1998) Control of vocal intensity in budgerigars (Melopsittacus undulatus): differential reinforcement of vocal intensity and the Lombard effect. J Acoust Soc Am 103:1190–1198.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (1970) Frequency sensitivity of auditory neurons in the caiman cochlear nucleus. Z Vergl Physiol 66:251–256.

    Article  Google Scholar 

  • Manley GA (1972) Frequency response of the ear of the Tokay gecko. J Exp Zool 181:159–168.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (1990) Peripheral Hearing Mechanisms in Reptiles and Birds. Heidelberg, New York: Springer-Verlag.

    Book  Google Scholar 

  • Manley GA, Gleich O (1991) Evolution and specialization of function in the avian auditory periphery. In: Fay RR, Popper AN, Webster DB (eds) The Evolutionary Biology of Hearing. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Manley GA, Köppl C, Yates GK (1997) Activity of primary auditory neurons in the cochlear ganglion of the emu Dromaius novaehollandiae: spontaneous discharge, frequency tuning, and phase locking. J Acoust Soc Am 101:1560–1573.

    Article  PubMed  CAS  Google Scholar 

  • Marean GC, Burt JM, Beecher MD, Rubel EW (1993) Hair cell regeneration in European starling (Sturnus vulgarus): recovery of pure-tone detection thresholds. Hear Res 71:125–136.

    Article  PubMed  CAS  Google Scholar 

  • Marean GC, Burt JM, Beecher MD, Rubel EW (1998) Auditory perception following hair cell regeneration in European starling (Sturnus vulgarus): frequency and temporal resolution. J Acoust Soc Am 103:3567–3580.

    Article  PubMed  CAS  Google Scholar 

  • Marten K, Marier P (1977) Sound transmission and its significance for animal vocalization. I. Temperate habitats. Behav Ecol Sociobiol 2:271–290.

    Article  Google Scholar 

  • Marten K, Quine D, Marier P (1977) Sound transmission and its significance for animal vocalization. II. Tropical forest habitats. Behav Ecol Sociobiol 2:291–302.

    Article  Google Scholar 

  • Moody DB (1994) Detection and discrimination of amplitude-modulated signals by macaque monkeys. J Acoust Soc Am 95:3499–3510.

    Article  PubMed  CAS  Google Scholar 

  • Moore BCJ (1973) Frequency difference limens for short-duration tones. J Acoust Soc Am 54:610–619.

    Article  PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR (1988) Gap detection with sinusoids and noise in normal, impaired, and electrically stimulated ears. J Acoust Soc Am 83:1093–1101.

    Article  PubMed  CAS  Google Scholar 

  • Moore BCJ, Sek A (1994a) Discrimination of modulation type (amplitude modulation or frequency modulation) with and without background noise. J Acoust Soc Am 96:726–732.

    Article  CAS  Google Scholar 

  • Moore BCJ, Sek A (1994b) Effects of carrier frequency and background noise on the detection of mixed modulation. J Acoust Soc Am 96:741–751.

    Article  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR, Peters RW (1985) Relative dominance of individual partials in determining the pitch of complex tones. J Acoust Soc Am 77:1853–1860.

    Article  Google Scholar 

  • Moore BCJ, Peters RW, Glasberg BR (1985) Thresholds for the detection of inharmonicity in complex tones. J Acoust Soc Am 77:1861–1867.

    Article  PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR, Peters RW (1986) Thresholds for hearing mistuned par-tials as separate tones in harmonic complexes. J Acoust Soc Am 80:479–483.

    Article  PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR, Plack CJ, Biswas AK (1988) The shape of the ear’s tem-poral window. J Acoust Soc Am 83:1102–1116.

    Article  PubMed  CAS  Google Scholar 

  • Morton ES (1970) Ecological sources of selection on avian sounds. Ph.D. Thesis, Yale University, New Haven, CT.

    Google Scholar 

  • Morton ES (1975) Ecological sources of selection on avian sounds. Am Nat 109:17–34.

    Article  Google Scholar 

  • Nelson DA, Marler P (1990) The perception of birdsong and an ecological concept of signal space. In: Stebbins WC, Berkley MA (eds) Comparative Perception. Vol 2: Complex Signals. New York: Wiley, pp. 443–478.

    Google Scholar 

  • Nespor AN, Dooling RJ, Triblehorn JD (1996) Discrimination of frequency modulation (FM) and amplitude modulation (AM) by budgerigars (Melopsittacus undulatus). J Acoust Soc Am 100:27–53.

    Article  Google Scholar 

  • Nieboer E, Van der Paardt M (1977) Hearing of the African wood owl, Strix woodfordü. Neth J Zool 27:227–229.

    Article  Google Scholar 

  • Niemiec AJ, Raphael Y, Moody DB (1994) Return of auditory function following structural regeneration after acoustic trauma: behavioral measures from quail. Hear Res 79:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Okanoya K, Dooling RJ (1985) Colony differences in auditory thresholds in the canary. J Acoust Soc Am 78:1170–1176.

    Article  PubMed  CAS  Google Scholar 

  • Okanoya K, Dooling RJ (1987) Hearing in Passerine and Psittacine birds: a comparative study of masked and absolute auditory thresholds. J Comp Psychol 101:7–15.

    Article  PubMed  CAS  Google Scholar 

  • Okanoya K, Dooling RJ (1988) Hearing in the swamp sparrow (Melospiza geor-giana) and the song sparrow (Melospiza melodia). Anim Behav 36:726–732.

    Article  Google Scholar 

  • Okanoya K, Dooling RJ (1990) Detection of gaps in noise by budgerigars (Melop-sittacus undulatus) and zebra finches (Poephila guttata). Hear Res 50:185–192.

    Article  PubMed  CAS  Google Scholar 

  • Page SC, Hulse SH, Cynx J (1989) Relative pitch perception in the European starling (Sturnus vulgaris): further evidence for an elusive phenomenon. J Exp Psychol Anim Behav Process 15:137–146.

    Article  PubMed  CAS  Google Scholar 

  • Patterson RD, Moore BCJ (1986) Auditory filters and excitation patterns as representations of frequency resolution. In: Moore BCJ (ed) Frequency Selectivity in Hearing. London: Academic Press, pp. 123–177.

    Google Scholar 

  • Patterson WC (1966) Hearing in the turtle. J Aud Res 6:453–464.

    Google Scholar 

  • Pettigrew JD, Larsen ON (1990) Directional hearing in the plains-wanderer, Pedionomus torquatus. In: Rowe M, Aitkin L (eds) Information Processing in Mammalian Auditory and Tactile Systems. New York: Wiley-Liss, pp. 179–190.

    Google Scholar 

  • Plomp R (1964) Rate decay of auditory sensation. J Acoust Soc Am 36:277–282.

    Article  Google Scholar 

  • Plomp R, Bouman MA (1959) Relation between hearing threshold and duration for tone pulses. J Acoust Soc Am 31:749–758.

    Article  Google Scholar 

  • Potash LM (1972) Noise induced changes in calls of the Japanese quail. Psychon Sci 26:252–254.

    Google Scholar 

  • Pumphrey RJ (1961) Sensory organs: hearing. In: Marshall AJ (ed) Biology and Comparative Anatomy of Birds. New York: Academic Press, pp. 69–86.

    Google Scholar 

  • Quine DB (1978) Infrasound detection and ultra low frequency discrimination in the homing pigeon (Columba livia). J Acoust Soc Am 63:S75.

    Article  Google Scholar 

  • Quine DB, Konishi M (1974) Absolute frequency discrimination in the barn owl. J Comp Physiol 93:347–360.

    Article  Google Scholar 

  • Richards DG, Wiley RH (1980) Reverberations and amplitude fluctuations in the propagation of sound in a forest: implications for animal communication. Am Nat 115:381–399.

    Article  Google Scholar 

  • Romer AS (1966) Vertebrate Paleontology, 3rd ed. Chicago: University of Chicago Press.

    Google Scholar 

  • Rosen S, Baker RJ (1994) Characterizing auditory filter nonlinearity. Hear Res 73:231–243.

    Article  PubMed  CAS  Google Scholar 

  • Rosowski JJ, Graybeal A (1991) What did Morganucodon hear? Biol J Linn Soc 101:131–168.

    Google Scholar 

  • Rubel EW, Ryals BM (1982) Patterns of hair cell loss in chick basilar papilla after intense auditory stimulation: exposure, duration and survival time. Acta Otolaryngol 93:31–41.

    Article  PubMed  CAS  Google Scholar 

  • Ryals BM, Rubel EW (1988) Hair cell regeneration after acoustic trauma in adult Commix quail. Science 240:1774–1776.

    Article  PubMed  CAS  Google Scholar 

  • Ryals BM, Dooling RJ, Westbrook E, Dent ML, MacKenzie A, Larsen ON (1999) Avian species differences in susceptibility to noise exposure. Hear Res 131:71–88.

    Article  PubMed  CAS  Google Scholar 

  • Salvi RJ, Giraudi DM, Henderson D, Hamernik RP (1982) Detection of sinusoidally amplitude modulated noise by the chinchilla. J Acoust Soc Am 71:424–429.

    Article  PubMed  CAS  Google Scholar 

  • Sams-Dodd F, Capranica RR (1994) Representation of acoustic signals in the eighth nerve of the Tokay gecko: I. pure tones. Hear Res 76:16–30.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC, Dooling RJ (1974) Noise-induced threshold shift in the parakeet (Melopsittacus undulatus). Proc Natl Acad Sci U S A 71:1962–1965.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC, Pallone RL (1980) Frequency selectivity in the parakeet studied by isointensity masking contours. J Exp Biol 87:331–342.

    Google Scholar 

  • Saunders JC, Rintelmann WF (1978) Frequency selectivity in man: the relation between critical band, critical ratio, and psychophysical tuning curves. Paper presented at Midwinter Meeting of the Association for Research in Otolaryngology, St Petersburg, FL.

    Google Scholar 

  • Saunders JC, Salvi RJ (1993) Psychoacoustics of normal adult chickens: thresholds and temporal integration. J Acoust Soc Am 94:83–90.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC, Salvi RJ (1995) Pure tone masking patterns in adult chicken before and after recovery from acoustic trauma. J Acoust Soc Am 98:1365–1371.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC, Denny RM, Bock GR (1978) Critical bands in the parakeet (Melopsittacus undulatus). J Comp Physiol 125:359–365.

    Article  Google Scholar 

  • Saunders JC, Rintelmann WF, Bock G (1979) Frequency selectivity in bird and man: a comparison among critical ratios, critical bands, and psychophysical tuning curves. Hear Res 1:303–323.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC, Cohen YE, Szymko YM (1991) The structural and functional consequences of acoustic injury in the cochlea and peripheral auditory system: a five year update. J Acoust Soc Am 90:136–146.

    Article  PubMed  CAS  Google Scholar 

  • Schermuly L, Klinke R (1985) Change of characteristic frequencies of pigeon primary auditory afferents with temperature. J Comp Physiol A 156:209–211.

    Article  Google Scholar 

  • Schorer E (1986) Critical modulation frequency based on detection of AM versus FM tones. J Acoust Soc Am 79:1054–1057.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder MR (1970) Synthesis of low peak-factor signals and binary sequences with low autocorrelation. IEEE Trans Info Theory 16:85–89.

    Article  Google Scholar 

  • Schwartzkopff J (1949) Über Sitz and Leistung von Gehör and Vibrationssinn bei Vögeln. Z Vergl Physiol 31:527–603.

    Article  Google Scholar 

  • Schwartzkopff J (1968) Structure and function of the ear and the auditory brain areas in birds. In: DeReuck AVS, Knight J (eds) Hearing Mechanisms in Vertebrates. Boston, MA: Little, Brown, pp. 41–59.

    Google Scholar 

  • Schwartzkopff J (1973) Mechanoreception. In: Farner DS, King JR, Parks KC (eds) Avian Biology, Vol 3. New York: Academic Press, pp. 417–477.

    Google Scholar 

  • Shamma SA, Versnel H (1995) Ripple analysis in ferret primary auditory cortex I. Response characteristics of single units to sinusoidally rippled spectra. Aud Neurosci 1:233–254.

    Google Scholar 

  • Shofner WP, Yost WA (1994) Repetition pitch: auditory processing of rippled noise in the chinchilla. Paper presented at the 10th International Symposium on Hearing, Irsec, Germany.

    Google Scholar 

  • Shofner WP, Yost WA (1995) Discrimination of rippled spectrum noise from flat-spectrum wideband noise by chinchillas. Aud Neurosci 1:127–138.

    Google Scholar 

  • Shreiner CE, Calhoun BM (1995) Spectral envelope coding in cat primary auditory cortex. Aud Neurosci 1:39–61.

    Google Scholar 

  • Sinnott JM, Sachs MB, Hienz RD (1980) Aspects of frequency discrimination in passerine birds and pigeons. J Comp Physiol Psychol 94:401–415.

    Article  PubMed  CAS  Google Scholar 

  • Smolders JWT, Klinke R (1984) Effects of temperature on the properties of primary auditory fibres of the spectacled caiman, Caiman crocodilus (L.). J Comp Physiol 155:19–30.

    Article  Google Scholar 

  • Starck D (1978) Vergleichende Anatomic der Wirbeltiere, Band 1. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Stebbins WC (1970) Studies of hearing and hearing loss in the monkey. In: Stebbins WC (ed) Animal Psychophysics: The Design and Conduct of Sensory Experiments. New York: Appleton, pp. 41–66.

    Google Scholar 

  • Suga N, Campbell HW (1967) Frequency sensitivity of single auditory neurons in the gecko Coleonyx variegatus. Science 157:88–90.

    Article  PubMed  CAS  Google Scholar 

  • Summers V, Leek MR (1994) The internal representation of spectral contrast in hearing-impaired listeners. J Acoust Soc Am 95:3518–3528.

    Article  PubMed  CAS  Google Scholar 

  • Theunissen FE, Doupe AJ (1998) Temporal and spectral sensitivity of complex neurons in the nucleus Hvc of male zebra finches. J Neurosci 18:3786–3802.

    PubMed  CAS  Google Scholar 

  • Tsue TT, Oesterle EC, Rubel EW (1994) Hair cell regeneration in the inner ear. Otolaryngol Head Neck Surg 111:281–301.

    Article  PubMed  CAS  Google Scholar 

  • Trainer JE (1946) The auditory acuity of certain birds. Ph.D. Thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Van Dijk T (1973) A comparative study of hearing in owls of the family Strigidae. Neth J Zool 23:131–167.

    Article  Google Scholar 

  • Viemeister NF (1979) Temporal modulation transfer functions based upon modulation thresholds. J Acoust Soc Am 66:1364–1380.

    Article  PubMed  CAS  Google Scholar 

  • Viemeister NF, Plack CJ (1993) Time analysis. In: Yost WA, Popper AN, Fay RR (eds) Human Psychophysics. New York: Springer-Verlag, pp. 116–154.

    Chapter  Google Scholar 

  • Waser PM, Waser MS (1977) Experimental studies of primate vocalization: special-izations for long-distance propagation. Z Tierpsychol 43:239–263.

    Article  Google Scholar 

  • Watson CS, Wroton HW, Kelly WJ, Benbassat CA (1975) Factors in the discrimination of tonal patterns. I. Component frequency, temporal position, and silent intervals. J Acoust Soc Am 57:1175–1185.

    Article  PubMed  CAS  Google Scholar 

  • Watson CS, Kelly WJ, Wroton HW (1976) Factors in the discrimination of tonal patterns. II. Selective attention and learning under various levels of stimulus uncertainty. J Acoust Soc Am 60:1176–1186.

    Article  PubMed  CAS  Google Scholar 

  • Weyer EG (1971) Hearing in the Crocodilia. Proc Natl Acad Sci U S A 68: 1498–1500.

    Article  Google Scholar 

  • Weyer EG (1978) The Reptile Ear. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Weyer EG, Vernon JA (1956) The sensitivity of the turtle’s ear as shown by its electrical potentials. Proc Natl Acad Sci U S A 42:213–220.

    Article  Google Scholar 

  • Weyer EG, Vernon JA (1957) Auditory responses in the spectacled caiman. J Cell Comp Physiol 50:333–339.

    Article  Google Scholar 

  • Weyer EG, Vernon JA (1960) The problem of hearing in snakes. J Aud Res 1:77–83.

    Google Scholar 

  • Wier CC, Jesteadt W, Green DM (1977) Frequency discrimination as a function of frequency and sensation level. J Acoust Soc Am 61:177–184.

    Google Scholar 

  • Wiley RH, Richards DG (1978) Physical constraints on acoustic communication in the atmosphere: implications for the evolution of animal vocalizations. Behav Ecol Sociobiol 3:69–94.

    Article  Google Scholar 

  • Williams H, Cynx J, Nottebohm F (1989) Timbre control in zebra finch (Taeniopygia guttata) song syllables. J Comp Psychol 103:366–380.

    Article  PubMed  CAS  Google Scholar 

  • Williams KN, Perrott DR (1972) Temporal resolution of tonal pulses. J Acoust Soc Am 51:644–647.

    Article  Google Scholar 

  • Wisniewski AB, Hulse SH (1997) Auditory scene analysis in European starlings (Sturnus vulgaris): discrimination of song segments, their segregation from multiple and reversed conspecific songs, and evidence for conspecific categorization. J Comp Psychol 111:337–350.

    Article  Google Scholar 

  • Yodlowski ML (1980) Infrasonic sensitivity in pigeons (Columba livia). Ph.D.Thesis, Rockefeller University, New York.

    Google Scholar 

  • Yost WA (1992) Auditory perception and sound source determination. Curr Dir Psychol Sci 1:179–184.

    Article  Google Scholar 

  • Yost WA (1996) Pitch of iterated rippled noise. J Acoust Soc Am 100:511–518.

    Article  PubMed  CAS  Google Scholar 

  • Yost WA, Hill R (1978) Strength of pitches associated with ripple noise. J Acoust Soc Am 64:485–492.

    Article  PubMed  CAS  Google Scholar 

  • Yost WA, Patterson R, Sheft S (1996) Pitch and pitch discrimination of broadband signals with rippled power spectra. J Acoust Soc Am 63:1166–1173.

    Article  Google Scholar 

  • Zwicker E (1952) Die Grenzen der Horbarkeit der Amplitudenmodulation and der Frequenzmodulation eines Tones. Acustica 2:125–133.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dooling, R.J., Lohr, B., Dent, M.L. (2000). Hearing in Birds and Reptiles. In: Dooling, R.J., Fay, R.R., Popper, A.N. (eds) Comparative Hearing: Birds and Reptiles. Springer Handbook of Auditory Research, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1182-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1182-2_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7036-2

  • Online ISBN: 978-1-4612-1182-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics