Skip to main content

Examples and Applications of Infinite Permutation Groups

  • Chapter
Book cover Permutation Groups

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 163))

  • 2897 Accesses

Abstract

The object of this chapter is to give a selection of examples of infinite permutation groups, and a few of the ways in which permutation groups can be used in a more general context. For example, we give a criterion of Serre for a group to be free which leads to a classic theorem on free groups due to J. Nielson and O. Schreier, and give a construction due to N. D. Gupta and S. Sidki of an infinite p-group which is finitely generated. What makes these constructions manageable is that the underlying set on which the groups act have certain relational structures. The most symmetric of these structures (the ones with the largest automorphism groups) are the homogeneous structures; of these the countable universal graph is an especially interesting and well-studied example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adeleke, S.A. 1988. Embeddings of infinite permutation groups in sharp, highly transitive, and homogeneous groups. Proc. Edinburgh Math. Soc. (2)31, 169–178.

    MathSciNet  Google Scholar 

  • Adian, S. I. 1979. The Burnside Problem and Identities in Groups.Berlin: Springer-Verlag.

    Google Scholar 

  • Alperin, J. 1965. On a theorem of Manning. Math. Z. 88, 434–435.

    MathSciNet  MATH  Google Scholar 

  • Alspach, B. 1968. A combinatorial proof of a conjecture of Goldberg and Moon. Canad. Math. Bull. 11, 655–661.

    MathSciNet  MATH  Google Scholar 

  • Apostol, T.M. 1976. Introduction to Analytic Number Theory. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Artin, E. 1957. Geometric Algebra. New York: Interscience. (reprinted: 1988. New York: Wiley).

    MATH  Google Scholar 

  • Aschbacher, M. 1972. On doubly transitive permutation groups of degree n = 2 (mod p). Illinois J. 16, 276–278.

    MathSciNet  MATH  Google Scholar 

  • Aschbacher, M. and L.L. Scott. 1985. Maximal subgroups of finite groups. J. Algebra 92, 44–80.

    MathSciNet  MATH  Google Scholar 

  • Atkinson, M.D. (ed.) 1984. Computational Group Theory. London: Academic Press.

    MATH  Google Scholar 

  • Babai, L. 1980. On the complexity of canonical labeling of strongly regular graphs. SIAM J. Comput.. 9, 212–216.

    MathSciNet  MATH  Google Scholar 

  • Babai, L. 1981. On the order of uniprimitive permutation groups. Annals of Math. 113, 553–568.

    MathSciNet  MATH  Google Scholar 

  • Babai, L. 1982. On the order of doubly transitive permutation groups. Invent. Math. 65, 473–484.

    MathSciNet  MATH  Google Scholar 

  • Babai, L. 1986. On the length of subgroup chains in the symmetric group. Comm. Algebra 14, 1729–1736.

    MathSciNet  MATH  Google Scholar 

  • Babai, L. 1989. The probability of generating the symmetric group. J. Comb. Theory (A) 52, 148–153.

    MathSciNet  MATH  Google Scholar 

  • Babai, L. and P. Erdös. 1982. Representations of group elements as short products. Ann. Discrete Math. 12, 27–30.

    Google Scholar 

  • Babai, L. and A. Seress. 1987. On the degree of transitivity of permutation groups: a short proof. J. Comb. Theory (A) 45, 310–315.

    MathSciNet  MATH  Google Scholar 

  • Babai L., P.J. Cameron and P.P. Pálfy. 1982. On the orders of primitive groups with restricted nonabelian composition factors. J. Algebra 79, 161–168.

    MathSciNet  MATH  Google Scholar 

  • Baddeley, R.W. 1993. Primitive permutation groups with a regular non-abelian normal subgroup. Proc. London Math. Soc. (3)67, 547–595.

    MathSciNet  Google Scholar 

  • Baer, R. 1934. Die Kompositionsreihe der Gruppe aller eineindeutigen Abbildungen einer unendlichen Menge auf sich. Studia Math 5, 15–17.

    Google Scholar 

  • Ball, R.W. 1966. Maximal subgroups of symmetric groups. Trans. Amer. Math. Soc. 121, 393–407.

    MathSciNet  MATH  Google Scholar 

  • Bannai, E. and S. Iwasaki. 1974. A note on subdegrees of finite permutation groups, Hokkaido Math. J. 3, 95–97.

    MathSciNet  MATH  Google Scholar 

  • Baumgartner, J.E., S. Shelah and S. Thomas. 1993. Maximal subgroups of infinite symmetric groups. Notre Dame J. Formal Logic 34, 1–11.

    MathSciNet  MATH  Google Scholar 

  • Bercov, R.D. 1965. The double transitivity of a class of permutation groups. Canad. J. Math. 17, 480–493.

    MathSciNet  MATH  Google Scholar 

  • Bercov, R.D. and C.R. Hobby. 1970. Permutation groups on unordered sets. Math. Z. 115, 165–168.

    MathSciNet  MATH  Google Scholar 

  • Berkovic, Ja.G. 1989. On p-subgroups of finite symmetric and alternating groups. Contemporary Math. 93, 67–76.

    MathSciNet  Google Scholar 

  • Beth, Th., D. Jungnickel and H. Lenz. 1993. Design Theory. Cambridge: Cambridge Univ. Pre

    Google Scholar 

  • Biggs, N.L. 1989. Proof of Serre’s Theorem. Discrete Math. 78, 55–57.

    MathSciNet  MATH  Google Scholar 

  • Biggs, N.L. and A.T. White. 1979. Permutation Groups and Combinatorial Structures. London Math. Soc. Lect. Note Series no. 33, Cambridge: Cambridge Univ. Press.

    MATH  Google Scholar 

  • Birch, B.J., R.G. Burns, S.O. Macdonald and P.M. Neumann. 1976. On the degrees of permutation groups containing elements separating finite sets. Bull. Austral. Math. Soc. 14, 7–10.

    MathSciNet  MATH  Google Scholar 

  • Blaha, K.D. 1992. Minimum bases for permutation groups: the greedy approximation, J. Algorithms 13, 297–306.

    MathSciNet  MATH  Google Scholar 

  • Bochert, A. 1889. Ueber die Transitivitätsgrenze der Substitutionengruppen, welche die Alternierende ihres Grades nicht einhalten. Math. Ann. 33, 572–583.

    MathSciNet  MATH  Google Scholar 

  • Bochert, A. 1897. Ueber die Classe der Transitiven Substitutionengruppen II. Math. Ann. 49, 133–144.

    MathSciNet  MATH  Google Scholar 

  • Bovey, J. 1980. The probability that some small power of a permutation has small degree. Bull. London Math. Soc. 12, 47–51.

    MathSciNet  MATH  Google Scholar 

  • Bovey J., and A. Williamson. 1978. The probability of generating the symmetric group. Bull. London Math. Soc. 10, 91–96.

    MathSciNet  MATH  Google Scholar 

  • Brauer, R. 1941. On connections between the ordinary and modular characters of groups of finite order. Ann. of Math. (2)42, 926–935.

    MathSciNet  Google Scholar 

  • Brazil M., J. Covington, T. Penttila, C.E. Praeger and A.R. Woods. 1994. Maximal subgroups of infinite symmeric groups. Proc. London Math. Soc. (3)68, 77–111.

    MathSciNet  Google Scholar 

  • Brown, M. 1959. Weak n-homogeneity implies weak n − 1-homogeneity. Proc. Amer. Math. Soc. 10, 644–647.

    MathSciNet  MATH  Google Scholar 

  • de Bruijn, N.G. 1957. Embedding theorems for infinite groups. Indag. Math. 19, 560–569.

    Google Scholar 

  • Buekenhout, F. 1988. On a theorem of O’Nan and Scott. Bull. Soc. Math. Belg. 40, 1–9.

    MathSciNet  MATH  Google Scholar 

  • Burnside, W. 1911. Theory of Groups of Finite Order. 2nd. ed. Cambridge: Cambridge Univ. Press. (reprinted: 1955, New York: Dover Publ.)

    Google Scholar 

  • Butler, G. and J.J. Cannon. 1982. Computing in permutation and matrix groups,I. Math. Comp. 39, 663–670.

    MathSciNet  MATH  Google Scholar 

  • Butler, G. and J. McKay. 1983. The transitive groups of degree up to eleven. Comm. Algebra 11, 863–911.

    MathSciNet  MATH  Google Scholar 

  • Cameron, P.J. 1972. On groups with several doubly-transitive permutation representations. Math. Z. 128, 1–14.

    MathSciNet  MATH  Google Scholar 

  • Cameron, P.J. 1976. Transitivity of permutation groups on unordered sets. Math. Z. 148, 127–139.

    MathSciNet  MATH  Google Scholar 

  • Cameron, P.J. 1978. Orbits of permutation groups on unordered sets, I. J. London Math. Soc. (2)17, 410–414.

    Google Scholar 

  • Cameron, P.J. 1981a. Finite permutation groups and finite simple groups. Bull. London Math. Soc. 13, 1–22.

    MathSciNet  MATH  Google Scholar 

  • Cameron, P.J. 1981b. Normal subgroups of infinite multiply transitive permutation groups. Combinatorica 1, 343–347.

    MathSciNet  MATH  Google Scholar 

  • Cameron, P.J. 1981c. Orbits of permutation groups on unordered sets, II. J. London Math. Soc. [vn(2), 23], 249–265.

    Google Scholar 

  • Cameron, P.J. 1983a. Orbits of permutation groups on unordered sets, III. J. London Math. Soc. (2),27, 229–237.

    Google Scholar 

  • Cameron, P.J. 1983b. Orbits of permutation groups on unordered sets, IV. J. London Math. Soc. (2),27, 238–247.

    Google Scholar 

  • Cameron, P.J. 1987. Some permutation representations of a free group. Europ. J. Combinatorics 8, 257–260.

    MATH  Google Scholar 

  • Cameron, P.J. 1990. Oligomorphic Permutation Groups. London Math. Soc. Lect. Note Series no. 152. Cambridge: Cambridge Univ. Press.

    MATH  Google Scholar 

  • Cameron, P.J. and A.M. Cohen. 1992. On the number of fixed point free elements in a permutation group. Discrete Math. [vn106/107], 135–138.

    Google Scholar 

  • Cameron, P.J. and K.W. Johnson. 1987. An investigation of countable B-groups. Math. Proc. Camb. Philos. Soc. 102, 223–231.

    MathSciNet  MATH  Google Scholar 

  • Cameron, P.J. and H.J. van Lint. 1991. Designs, Graphs, Codes and their Links. London Math. Soc. Student Texts no. 22. Cambridge: Cambridge Univ. Pr

    Google Scholar 

  • Cameron, P.J., P.M. Neumann and D.N. Teague. 1982. On the degrees of primitive permutation groups. Math. Z. 180, 141–149.

    MathSciNet  MATH  Google Scholar 

  • Cameron, P.J., C.E. Praeger, J. Saxl and G.M. Seitz. 1983. On the Sims conjecture and distance transitive graphs. Bull. London Math. Soc. 15, 499–506.

    MathSciNet  MATH  Google Scholar 

  • Cameron, P.J., R. Solomon and A. Turull. 1989. Chains of subgroups in symmetric groups. J. Algebra 127, 340–352.

    MathSciNet  MATH  Google Scholar 

  • Carmichael, R. 1937. Introduction to the Theory of Groups of Finite Order. Boston: Ginn. (reprinted: 1956, New York: Dover Publ.)

    Google Scholar 

  • Chapman, R.J. 1995. An elementary proof of the simplicity of the Mathieu groups M 11 and M 23. Amer. Math. Monthly 102, 544–545.

    MathSciNet  MATH  Google Scholar 

  • Cohen, D.E. 1989. Combinatorial Group Theory: a Topological Approach. London Math. Soc. Student Texts no. 14. Cambridge: Cambridge Univ. Press.

    MATH  Google Scholar 

  • Cole, F.N. 1894. List of the transitive substitution groups of ten and eleven letters. Quart. J. Pure Appl. Math. 27, 39–50.

    Google Scholar 

  • Collins, M.J. 1990. Some infinite Frobenius groups. J. Algebra 131, 161–165.

    MathSciNet  MATH  Google Scholar 

  • Conway, J.H. 1969. A group of order 8,315,553,613,086,720,000. Bull London Math. Soc. 1, 79–88.

    MathSciNet  MATH  Google Scholar 

  • Conway, J.H. 1971. Three Lectures on Exceptional Groups. Finite Simple Groups. (M. B. Powell and G. Higman eds.) New York: Academic Press.

    Google Scholar 

  • Conway J.H. 1984. Hexacode and tetracode-MOG and MINIMOG. Computational Group Theory. (M.D. Atkinson, ed.) New York: Academic Press.

    Google Scholar 

  • Conway, J.H. and N.J.A. Sloane. 1988. Sphere Packings, Lattices and Groups. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Conway, J.H., R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson. 1985. An Atlas of Finite Simple Groups. Oxford: Clarendon Pre

    Google Scholar 

  • Cooperstein, B.N. 1978. Minimal degree for a permutation representation of a classical group. Israel J. Math. 30, 213–235.

    MathSciNet  MATH  Google Scholar 

  • Curtis, C.W., W.M. Kantor and G. Seitz. 1976. The 2-transitive permutation representations of the finite Chevalley groups. Trans. Amer. Math. Soc. 218, 1–57.

    MathSciNet  MATH  Google Scholar 

  • Curtis, R.T. 1976. A new combinatorial approach to M 24 . Math. Proc. Camb. Phil. Soc. 79, 25–42.

    MathSciNet  MATH  Google Scholar 

  • Dickson, L.E. 1905. On Finite Algebras. Nachr. kgl. Ges. Wiss. Göttingen. 358–393.

    Google Scholar 

  • Dixon, J.D. 1967. The Fitting subgroup of a linear solvable group. J. Austral. Math. Soc. 7, 417–424.

    MathSciNet  MATH  Google Scholar 

  • Dixon, J.D. 1969. The probability of generating the symmetric group. Math. Z. 110, 199–205.

    MathSciNet  MATH  Google Scholar 

  • Dixon, J.D. 1990. Most finitely generated permutation groups are free. Bull. London Math. Soc. 22, 222–226.

    MathSciNet  MATH  Google Scholar 

  • Dixon, J.D. and A. Majeed. 1988. Coset representatives for permutation groups. Portug. Math. 45, 61–68.

    MathSciNet  MATH  Google Scholar 

  • Dixon, J.D. and B.C. Mortimer. 1988. The primitive permutation groups of degree less than 1000. Math. Proc. Camb. Philos. Soc. 103, 213–238.

    MathSciNet  MATH  Google Scholar 

  • Dixon, J.D. and H.S. Wilf. 1983. The random selection of unlabeled graphs. J. Algorithms 4, 205–213.

    MathSciNet  MATH  Google Scholar 

  • Dixon, J.D., P.M. Neumann and S. Thomas. 1986. Subgroups of small index in infinite symmetric groups. Bull. London Math. Soc. 18, 580–586.

    MathSciNet  MATH  Google Scholar 

  • Dornhoff, L. 1969. The rank of primitive solvable permutation groups. Math. Z. 109, 205–210.

    MathSciNet  MATH  Google Scholar 

  • Dress, A.W. M., M.H. Klin and M.E. Muzichuk. 1992. On p-configurations with few slopes in the affine plane over F p and a theorem of W. Burnside’s. Bayreuth Math. Schr. 40, 7–19.

    MathSciNet  MATH  Google Scholar 

  • Droste, M. 1985. Structure of partially ordered sets with transitive automorphism groups. Memoirs Amer. Math. Soc. no. 57.

    Google Scholar 

  • Easdown, D. and C.E. Praeger. 1988. On the minimal faithful degree of a finite group. Bull. Austral. Math. Soc. 38, 207–220.

    MathSciNet  MATH  Google Scholar 

  • Erdös, P. and A. Rényi. 1963. On random matrices. Publ. Math. Inst. Hung. Acad. Sci. 8, 455–461.

    MATH  Google Scholar 

  • Evans, D.M. 1986. Subgroups of small index in infinite general linear groups. Bull. London Math. Soc. 18, 587–590.

    MathSciNet  MATH  Google Scholar 

  • Evans, D.M. 1987. A note on automorphism groups of countably infinite structures. Arch. Math. 49, 479–483.

    MATH  Google Scholar 

  • Fein B., W.M. Kantor and M. Schacher. 1981. Relative Brauer groups II. J. reine angew. Math. 328, 39–57.

    MathSciNet  MATH  Google Scholar 

  • Feit, W. and J.G. Thompson. 1963. Solvability of groups of odd order. Pacific J. Math. 13, 775–1029.

    MathSciNet  MATH  Google Scholar 

  • Finkelstein, L. and W.M. Kantor (eds.) 1993. Groups and Computation. DIMACS Series in Discrete Math. and Theoretical Comp. Sci. no. 11. Providence, RI: Amer. Math. Soc.

    Google Scholar 

  • Fischer, I. and R.R. Struik. 1968. Nil algebras and periodic groups. Amer. Math. Monthly 75, 611–623.

    MathSciNet  MATH  Google Scholar 

  • Fisher, K.F. 1975. The polycyclic length of linear and finite polycyclic groups, Canad. J. Math. 26, 1002–1009.

    Google Scholar 

  • Foulkes, H.O. 1963. On Redfield’s group reduction functions. Canad. J. Math. 15, 272–284.

    MathSciNet  MATH  Google Scholar 

  • Foulser, D.A. 1969. Solvable permutation groups of low rank. Trans. Amer. Math. Soc. 134, 1–54.

    MathSciNet  Google Scholar 

  • Fraïssé, R. 1954. Sur l’extension aux relations de quelques propriétés des orders. Ann. Sci. Ecole Norm. Sup. 71, 361–388.

    Google Scholar 

  • Frobenius, G. 1902. Über primitive Gruppen des Grades n und der Klasse n-1, 5.6. Akad. Berlin 455–459.

    Google Scholar 

  • Gates, W.H. and C.H. Papadimitriou. 1979. Bounds for sorting by prefix reversal, Discrete Math. 27, 47–57.

    MathSciNet  Google Scholar 

  • Glass, A.M.W. and S.H. McCleary. 1991. Highly transitive representations of free groups and free products. Bull. Austral Math. Soc. 43, 19–36.

    MathSciNet  MATH  Google Scholar 

  • Goldschmidt, D.M. and L.L. Scott. 1978. A problem of W.A. Manning on primitive permutation groups. Math. Z. 161, 97–100.

    MathSciNet  MATH  Google Scholar 

  • Golod, E.S. 1964. On nil-algebras and finitely approximable p-groups. Izvest. Akad. Nauk. USSR Ser. Math. 28, 273–276. [Russian]

    MathSciNet  Google Scholar 

  • Gorenstein, D. 1979. The classification of finite simple groups. Bull. Amer. Math. Soc. (N.S.) 1, 43–199.

    MathSciNet  MATH  Google Scholar 

  • Gorenstein, D. 1982. Finite Simple Groups. New York: Plenum.

    Google Scholar 

  • Gorenstein D., R. Lyons and R. Solomon. 1994. The Classification of Finite Simple Groups. Providence, RI: Amer. Math. Soc.

    Google Scholar 

  • Grigorchuk, R.I. 1980. On the Burnside problem for periodic groups. Functional Anal. Appl. 14, 41–43.

    MathSciNet  MATH  Google Scholar 

  • Grün, O. 1945. Beiträge zur Gruppentheorie II. Über einen Satz von Frobenius. J. Math. 186, 165–169.

    MATH  Google Scholar 

  • Gründhofer, Th. 1989. Sharply transitive linear groups and nearfields over p-adic fields. Forum Math. 1, 81–101.

    MathSciNet  Google Scholar 

  • Gunhouse, S.V. 1992. Highly transitive representations of free products on the natural numbers. Arch. Math. 58, 435–443.

    MathSciNet  MATH  Google Scholar 

  • Gupta, N.D. 1989. On groups in which every element has finite order. Amer. Math. Monthly 96, 297–308.

    MathSciNet  MATH  Google Scholar 

  • Gupta, N.D. and S. Sidki. 1983. On the Burnside problem for periodic groups. Math. Z. 182, 385–388.

    MathSciNet  MATH  Google Scholar 

  • Hall M., Jr. 1954. On a theorem of Jordan. Pacific J. Math. 4, 219–226.

    MathSciNet  MATH  Google Scholar 

  • Hall M., Jr. 1959. The Theory of Groups. New York: Macmillan.

    Google Scholar 

  • Hall M., Jr. 1962. Automorphisms of Steiner triple systems. Proc. Symp. Pure Math. vol. VI. Providence, RI: Amer. Math. Soc. 47–66.

    Google Scholar 

  • Hall, P. 1962. Wreath products and characteristically simple groups. Proc. Camb. Philos. Soc. 58, 170–184.

    MATH  Google Scholar 

  • Hering, C. 1974. Transitive linear groups and linear groups which contain irreducible subgroups of prime order. Geom. Dedic. 2, 425–460.

    MathSciNet  MATH  Google Scholar 

  • Herstein, I.N. 1958. A remark on finite groups. Proc. Amer. Math. Soc. 9, 255–257.

    MathSciNet  MATH  Google Scholar 

  • Hickin, K.K. 1992. Highly transitive Jordan representations of free products. J. London Math. Soc. (2)46, 81–91.

    MathSciNet  Google Scholar 

  • Higman, D.G. 1964. Finite permutation groups of rank 3. Math. Z. 86, 145–156.

    MathSciNet  MATH  Google Scholar 

  • Higman, D.G. 1967. Intersection matrices for finite permutation groups. J. Algebra 6, 22–42.

    MathSciNet  MATH  Google Scholar 

  • Higman, D.G. and C. Sims 1968. A simple group of order 44, 352,000. Math. Z. 105, 110–113.

    MathSciNet  MATH  Google Scholar 

  • Higman, G. 1969. On the simple groups of D.G. Higman and C.C. Sims. Illinois J. Math. 13, 74–80.

    MathSciNet  MATH  Google Scholar 

  • Higman G., B. H. Neumann and H. Neumann. 1949. Embedding theorems for groups. J. London Math. Soc. (1) 24, 247–254.

    MathSciNet  Google Scholar 

  • Hoffman, K. and R. Kunze. 1971. Linear Algebra. 2nd ed. Engelwood Cliffs, NJ: Prentice—Hall.

    Google Scholar 

  • Hoffman, P.N. and J.F. Humphreys. 1992. Projective Representations of the Symmetric Group. Oxford: Clarendon Press.

    Google Scholar 

  • Hoffmann, C.M. 1982. Graph-Theoretic Algorithms and Graph Isomorphism Lect. Notes Comp. Sci. no. 136. New York: Springer-Verlag.

    Google Scholar 

  • Hughes, D.R. 1965. Extensions of designs and groups: projective, symplectic and certain affine groups. Math. Z. 89, 199–205.

    MathSciNet  MATH  Google Scholar 

  • Hughes, D.R. and F.C. Piper. 1985. Design Theory. Cambridge: Cambridge Univ. Press.

    Google Scholar 

  • Huppert, B. 1957. Zweifach transitive auflösbare Permutationsgruppen. Math. Z. 68, 126–150.

    MathSciNet  MATH  Google Scholar 

  • Huppert, B. 1967. Endliche Gruppen I. Berlin: Springer-Verlag.

    Google Scholar 

  • Huppert, B. and N. Blackburn. 1982a. Finite Groups II. New York: Springer-Verlag.

    Google Scholar 

  • Huppert, B. and N. Blackburn. 1982b. Finite Groups III. New York: Springer-Verlag.

    Google Scholar 

  • Il’in, V.I. and A.S. Takmakov. 1986. Primitive simple permutation groups of small degrees. Algebra and Logic 25, 167–

    MathSciNet  Google Scholar 

  • Itô, N. 1992. On cyclic tournaments. Hokkaido Math. J. 21, 273–277.

    MathSciNet  MATH  Google Scholar 

  • Ivanov, A.A., M.Kh. Klin, S.V. Tsaranov and S.V. Shpektorov. 1983. On the problem of computing the subdegrees of transitive permutation groups. Russian Math. Surveys. 38, 123–124.

    MathSciNet  MATH  Google Scholar 

  • Janko, Z. 1964. Finite groups with a nilpotent maximal subgroup. J. Austral. Math. Soc. 4, 449–451.

    Google Scholar 

  • Jerrum, M. 1986. A compact representation for permutation groups. J. Algorithms 7, 60–78.

    MathSciNet  MATH  Google Scholar 

  • Jordan, C. 1870. Traité des substitutions et des equations algébriques. Paris: Gauthier-Villars. (reprinted: 1957, Paris: Albert Blanchard).

    Google Scholar 

  • Jordan, C. 1871. Théorèmes sur les groupes primitifs. J. Math. Pures Appl. 16, 383–408.

    Google Scholar 

  • Jordan C. 1872. Récherches sur les substitutions. Liouville’s J. (2)17, 355.

    Google Scholar 

  • Jordan, C. 1873. Sur la limite de transitivité des groupes non-alternées. Bull Soc. Math. France 1, 40–71.

    Google Scholar 

  • Jordan, C. 1875. Sur la limité du degré des groups primitifs qui contiennent une substitution donnée. J. reine angew. Math. 79, 248–253.

    Google Scholar 

  • Kaloujnine, L. 1948. La structure des p-groupes de Sylow des groupes symmétriques finis. Ann. Sci. École Norm. Sup. (3)65, 235–276.

    Google Scholar 

  • Kaloujnine, L. and M. Krasner. 1948. Le produit complet des groupes de permutations et le problème d’extension des groupes. C. R. Acad. Sci. Paris 227, 806–808.

    MathSciNet  MATH  Google Scholar 

  • Kantor, W.M. 1969. Jordan Groups. J. Algebra 12, 471–493.

    MathSciNet  MATH  Google Scholar 

  • Kantor, W.M. 1972. k-homogeneous groups. Math. Z. 124, 261–265.

    MathSciNet  MATH  Google Scholar 

  • Kantor, W.M. 1974. Primitive groups having transitive subgroups of smaller, prime power degree. Israel J. Math. 18, 141–143.

    MathSciNet  MATH  Google Scholar 

  • Kantor, W.M. 1979. Permutation representations of the finite classical groups of small degree or rank. J. Algebra 60, 158–168.

    MathSciNet  MATH  Google Scholar 

  • Kantor, W.M. 1985a. Some consequences of the classification of finite simple groups, Finite Groups-Coming of Age. Contemp. Math. no. 45. Providence, RI: Amer. Math. Soc. 159–173.

    Google Scholar 

  • Kantor, W.M. 1985b. Sylow’s theorem in polynomial time. J. Comp. and Sys. Sci. 30, 359–394.

    MathSciNet  MATH  Google Scholar 

  • Kantor, W.M. 1987. Primitive permutation groups of odd degree, and an application to finite projective planes. J. Algebra 106, 15–45.

    MathSciNet  MATH  Google Scholar 

  • Kantor, W.M. and R.A. Liebler. 1982. The rank 3 permutation representations of the finite classical groups. Trans. Amer. Math. Soc. 271, 1–71.

    MathSciNet  MATH  Google Scholar 

  • Karolyi G., S.J. Kovacs and P.P. Palfy. 1990. Double transitive permutation groups with abelian stabilizers. Aequationes Math. [vn39 (1990) 161–166.

    Google Scholar 

  • Karrass, A. and D. Solitar. 1956. Some remarks on the infinite symmetric group. Math. Z. 66, 64–69.

    MathSciNet  MATH  Google Scholar 

  • Karzel, H. 1965. Unendliche Dicksonsche Fastkörper. Arch. Math. 16, 247–256.

    MathSciNet  MATH  Google Scholar 

  • Kerber, A. 1986. Enumeration under finite group action: symmetry classes of mappings. Combinatoire énumérative (G. Labelle et P. Leroux, eds.) Lect. Notes in Math. no. 1234. Berlin: Springer-Verlag. 160–176.

    Google Scholar 

  • Kerby, W. 1974. On infinite sharply multiply transitive groups. Hamb. Math. Einzelschriften (New Series) no. 6.

    Google Scholar 

  • Klemm, M. 1975. Über die Reduktion von Permutations Moduln. Math. Z. 143, 113–117.

    MathSciNet  MATH  Google Scholar 

  • Klemm, M. 1977. Primitive Permutationsgruppen von Primzahlpotenzgrad. Comm. in Algebra 5, 193–205.

    MathSciNet  MATH  Google Scholar 

  • Knapp, W. 1981. An order bound for the point stabilizer of a primitive permutation group. Arch. Math. 36, 481–484.

    MathSciNet  MATH  Google Scholar 

  • Knuth, D.E. 1991. Notes on efficient representation of permutation groups. Combinatorica 11, 57–68.

    MathSciNet  Google Scholar 

  • Kostrikin, A.I. 1990. Around Burnside. Berlin: Springer-Verlag.

    MATH  Google Scholar 

  • Kovács, L.G. 1986. Maximal subgroups in composite finite groups. J. Algebra 99, 114–131.

    MathSciNet  MATH  Google Scholar 

  • Kovács, L.G. 1989. Primitive subgroups of wreath products in product action. Proc. London Math. Soc. (3)58, 306–322.

    Google Scholar 

  • Kovács, L.G. and M.F. Newman. 1988. Generating transitive permutation groups. Quarterly J. Math. Oxford (2)39, 361–372.

    Google Scholar 

  • Kramer, E.S., S.S. Magliveras and R. Mathon. 1989. The Steiner systems 5(2, 4, 25) with non-trivial automorphism groups. Discrete Math. 77, 137–157.

    MathSciNet  MATH  Google Scholar 

  • Lachlan, A.H. and R.E. Woodrow. 1980. Countable ultrahomogeneous undirected graphs. Trans. Amer. Math. Soc. 262, 51–94.

    MathSciNet  MATH  Google Scholar 

  • Landau, E. 1909. Handbuch der Lehre von der Verteilung der Primzahlen. Leipzig: Teubner. (reprinted: 1953, New York: Chelsea).

    Google Scholar 

  • Lang, S. 1993. Algebra. 3rd ed. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Lauchli, H. and RM. Neumann. 1988. On linearly ordered sets and permutation groups of countable degree. Arch. Math. Logic 27, 189–192.

    MathSciNet  Google Scholar 

  • Lennox, J.C. and S.E. Stoneheuer. 1986. Subnormal Subgroups of Groups. Oxford: Oxford Univ. Press.

    Google Scholar 

  • Leon, J.S. 1980. On an algorithm for finding a base and strong generating set for a group given by generating permutations. Math. Comp. 35, 941–974.

    MathSciNet  MATH  Google Scholar 

  • Leon, J.S. 1984. Computing automorphism groups of combinatorial objects. Computational Group Theory (M.D. Atkinson, ed.). London: Academic Press. 321–336.

    Google Scholar 

  • Levingston, R. 1978. Primitive permutation groups containing a cycle of prime power length. Bull. London Math. Soc. 10, 256–260.

    MathSciNet  MATH  Google Scholar 

  • Levingston, R. and D.E. Taylor. 1976. The theorem of Marggraff on primitive permutation groups which contain a cycle. Bull. Austral. Math. Soc. 15, 125–128.

    MathSciNet  MATH  Google Scholar 

  • Lidl, R. and G.L. Muller. 1993. When does a polynomial over a finite field permute the elements of the field? Amer. Math. Monthly 100, 71–74.

    MathSciNet  MATH  Google Scholar 

  • Liebeck, M.W. 1982. Bounds for the orders of some transitive permutation groups. Bull. London Math. Soc. 14, 337–344.

    MathSciNet  MATH  Google Scholar 

  • Liebeck, M.W. 1983. Extensions of a theorem of Jordan on primitive permutation groups. J. Austral. Math. Soc. (A) 34, 155–171.

    MathSciNet  MATH  Google Scholar 

  • Liebeck, M.W. 1984a. On the orders of transitive permutation groups. Bull. London Math. Soc. 16, 523–524.

    MathSciNet  MATH  Google Scholar 

  • Liebeck, M.W. 1984b. On minimal degrees and base sizes of primitive groups. Arch. Math. (Basel) 43, 11–15.

    MathSciNet  MATH  Google Scholar 

  • Liebeck, M.W. 1986. The affine permutation groups of rank 3. Bull. London Math. Soc. 18, 165–172.

    MathSciNet  MATH  Google Scholar 

  • Liebeck, M.W. and J. Saxl. 1985a. The primitive permutation groups containing an element of large prime order. J. London Math. Soc. (2)31, 237–249.

    MathSciNet  Google Scholar 

  • Liebeck, M.W. and J. Saxl. 1985b. The primitive permutation groups of odd degree. J. London Math. Soc. (2)31, 250–264.

    MathSciNet  Google Scholar 

  • Liebeck, M.W. and J. Saxl. 1986. The finite primitive permutation groups of rank three. Bull. London Math. Soc. 18, 165–172.

    MathSciNet  MATH  Google Scholar 

  • Liebeck, M.W. and J. Saxl. 1991. Minimal Degrees of Primitive Permutation Groups, with an Application to Monodromy Groups of Covers of Riemann Surfaces. Proc. London Math. Soc. (3)63, 266–314.

    MathSciNet  Google Scholar 

  • Liebeck, M.W., C.E. Praeger and J. Saxl. 1987. The classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra 111, 365–383.

    MathSciNet  MATH  Google Scholar 

  • Liebeck, M.W., C.E. Praeger and J. Saxl. 1988a. On the O’Nan-Scott theorem for finite primitive permutation groups. J. Austral. Math. Soc. (A) 44, 389–396.

    MathSciNet  MATH  Google Scholar 

  • Liebeck, M.W., C.E. Praeger and J. Saxl. 1988b. On the 2-closures of primitive permutation groups. J. London Math. Soc. 37, 241–252.

    MathSciNet  MATH  Google Scholar 

  • Livingstone, D. and A. Wagner, 1965. Transitivity of finite permutation groups on unordered sets. Math. Z. 90, 393–403.

    MathSciNet  MATH  Google Scholar 

  • Luks, E.M. 1987. Computing the composition factors of a permutation group in polynomial time. Combinatorica 7, 87–99.

    MathSciNet  MATH  Google Scholar 

  • Lüneberg, H. 1969. Transitive Erweiterungen endlicher Permutationsgruppen. Lect. Notes in Math. no. 84. Berlin: Springer-Verlag.

    Google Scholar 

  • Lüneburg, H. 1980. Translation Planes. Berlin: Springer-Verlag.

    MATH  Google Scholar 

  • Lüneberg, H. 1981. Ein einfacher Beweis für den Satz von Zsigmondy über primitive Primteiler von a N -1. Geometries and Groups Lect. Notes in Math. no. 893. New York: Springer-Verlag. 219–222.

    Google Scholar 

  • MacPherson, H.D. and P.M. Neumann. 1990. Subgroups of infinite symmetric groups. J. London Math. Soc. (2)42, 64–84.

    MathSciNet  Google Scholar 

  • MacPherson, H.D. and C.E. Praeger. 1990. Maximal subgroups of infinite symmetric groups. J. London Math. Soc. (2)42, 85–92.

    MathSciNet  Google Scholar 

  • Manning, W.A. 1921. Primitive Groups, Part I. Math, and Astron., vol. I. Palo Alto, CA: Stanford Univ. Press.

    Google Scholar 

  • Massias, J.P., J.L. Nicolas and G. Robin. 1989. Effective bounds for the maximal order of an element in the symmetric group. Math. Comp. 53, 665–678.

    MathSciNet  MATH  Google Scholar 

  • Mathieu, E. 1861. Mémoire sur l’étude des functions des plusieurs quantités, sur le manière de les former et sur les subsitutions qui les laissent invariables. J. Math. Pures Appl. (Liouville) (2)6, 241–323.

    MathSciNet  Google Scholar 

  • Mathieu, E. 1873. Sur la function cinq fois transitive de 24 quantités. J. Math. Pures Appl. (Liouville) (2)18, 25–46.

    Google Scholar 

  • Maurer, I. 1955. Les groupes de permutations infinies. Gaz. Mat. Fiz. (A) 7, 400–408 (Romanian).

    Google Scholar 

  • McDonough, T.P. 1977. A permutation representation of a free group. Quart. J. Math. Oxford (2)28, 353–356.

    MathSciNet  Google Scholar 

  • Mekler, A.H. 1986. Groups embeddable in the autohomeomorphisms of Q. J. London Math. Soc. (2)33, 49–58.

    MathSciNet  Google Scholar 

  • Mekler, A.H., R. Schipperus, S. Shelah and J.K. Truss. 1993. The random graph and the automorphisms of the rational world. Bull. London Math. Soc. 25, 343–346.

    MathSciNet  MATH  Google Scholar 

  • Miller, G.A. 1899. On simple groups which can be represented as substitution groups that contain cyclical substitutions of prime degree. Amer. Math Monthly 6, 102–103 (= Coll. Works. 1, 419-420).

    MathSciNet  MATH  Google Scholar 

  • Miller, G.A. 1900. Sur plusiers groupes simples. Bull. Soc. Math. de France 28, 266–267 (= Coll. Works 2, 65-66).

    MATH  Google Scholar 

  • Miller, W. 1987. The maximal order of an element in a finite symmetric group. Amer. Math. Monthly 94, 497–506.

    MathSciNet  MATH  Google Scholar 

  • Mills, W.H. 1953. On non-isomorphism of certain holomorphs. Trans. Amer. Math. Soc. 74, 428–443.

    MathSciNet  MATH  Google Scholar 

  • Möller, R.G. 1991. The automorphism groups of regular trees. J. London Math. Soc. (2)43, 236–252.

    Google Scholar 

  • Mortimer, B.C. 1980. The modular permutation representations of the known doubly transitive groups. Proc. London Math. Soc. (3)41, 1–20.

    MathSciNet  Google Scholar 

  • Neumann, B.H. 1940. On the commutativity of addition. J. London Math. Soc. 15, 203–208.

    MathSciNet  Google Scholar 

  • Neumann, B.H. 1954. Groups covered by finitely many cosets. Publ. Math. Debrecen 3, 227–242.

    MathSciNet  MATH  Google Scholar 

  • Neumann, B.H. 1963. Twisted wreath products of groups. Arch. Math. 14, 1–6.

    MATH  Google Scholar 

  • Neumann, P.M. 1972. Transitive permutation groups of prime degree. J. London Math. Soc. (2)5, 202–208.

    Google Scholar 

  • Neumann, P.M. 1974. Transitive permutation groups of prime degree. Proc. Second Internat. Conf. Theory of Groups (A. Dold and B. Eckmann, eds.) Springer Lect. Notes in Math. no. 372. New York: Springer-Verlag. 520–535.

    Google Scholar 

  • Neumann, P.M. 1975a. The lawlessness of groups of finitary permutations. Arch. Math. (Basel) 26, 561–566.

    MathSciNet  MATH  Google Scholar 

  • Neumann, P.M. 1975b. Primitive permutation groups containing a cycle of prime-power length. Bull. London Math. Soc. 7, 298–299.

    MathSciNet  MATH  Google Scholar 

  • Neumann, P.M. 1976. The structure of finitary permutation groups. Arch. Math. (Basel) 27, 3–17.

    MathSciNet  MATH  Google Scholar 

  • Neumann, P.M. 1977. Finite permutation groups, edge-coloured graphs and matrices. Topics in Groups Theory and Computation (M.P.J. Curran, ed.). London: Academic Press. 82–118.

    Google Scholar 

  • Neumannn, P.M. 1979. A lemma which is not Burnside’s. Math. Scientist 4, 133–141.

    Google Scholar 

  • Neumann, P.M. 1985a. Some primitive permutation groups. Proc. London Math. Soc. (3)50, 265–281.

    Google Scholar 

  • Neumann, P.M. 1985b. Automorphisms of the rational world. J. London Math. Soc. (2)32, 439–448.

    Google Scholar 

  • Neumann, P.M. 1987. Some algorithms for computing with finite permutation groups, Proc. Groups-St. Andrews 1985 (E.F. Robertson and CM. Campbell eds.) London Math. Soc. Lect. Notes no. 121. Cambridge: Cambridge Univ. Press. 59–92.

    Google Scholar 

  • Neumann, P.M. and M.R. Vaughan-Lee. 1977. An essay on BFC groups. Proc. London Math. Soc. (3)35, 213–237.

    MathSciNet  Google Scholar 

  • Neumann, P.M., G.A. Stoy and E.C. Thompson. 1994. Groups and Geometry. Oxford: Oxford Univ. Press.

    MATH  Google Scholar 

  • Nicolas, J.L. 1967. Sur l’ordre maximum d’un élément dans la groupe S n des permutations. Acta. Arith. (1967/68) 14, 315–3

    MathSciNet  Google Scholar 

  • Novikov, P.S. and S.I. Adian. 1968. Infinite periodic groups I, II, III. Izvest. Akad. Nauk. USSR Ser. Math. 32, 212–244, 251-254, 709-731. [Russian]

    Google Scholar 

  • Ol’shanskii, A. Yu. 1982. On the Novikov-Adian theorem. Math. USSR Sbornik 118(160), 203–235, 287. [Russian]

    MathSciNet  Google Scholar 

  • O’Nan, M. 1973. Automorphisms of unitary block designs. J. Algebra 20, 495–511.

    MathSciNet  Google Scholar 

  • Pálfy, P.P. 1982. A polynomial bound for the orders of primitive solvable groups. J. Algebra 77, 127–137.

    MathSciNet  MATH  Google Scholar 

  • Passman, D.S. 1968. Permutation Groups. New York: Benjamin.

    Google Scholar 

  • Pogorelov, B.A. 1980. Primitive permutation groups of small degrees, I and II. Algebra and Logic 19, 230–254 and 278-296.

    Google Scholar 

  • Pólya, G. 1937. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen and Chemische Verbindungen. Acta Math. 68, 145–254.

    Google Scholar 

  • Pouzet, M. 1976. Application d’une propriété combinatoire des parties d’un ensemble aux groupes et aux relations. Math. Z. 150, 117–134.

    MathSciNet  MATH  Google Scholar 

  • Praeger, C.E. 1977. Sylow subgroups of transitive permutation groups II. J. Austral. Math. Soc. Ser. A 23, 329–332.

    MathSciNet  MATH  Google Scholar 

  • Praeger, C.E. 1979. On elements of prime order in primitive permutation groups. J. Algebra 60, 126–157.

    MathSciNet  MATH  Google Scholar 

  • Praeger, C.E. 1990. Finite primitive permutation groups: a survey, Groups Canberra. Lect. Notes in Math. no. 1456. Berlin: Springer-Verlag. 63–84.

    Google Scholar 

  • Praeger, C.E. and J. Saxl. 1980. On the order of primitive permutation groups. Bull. London Math. Soc. 12, 303–307.

    MathSciNet  MATH  Google Scholar 

  • Pyber, L. 1993a. The orders of doubly transitive permutation groups, elementary estimates. J. Combin. Theory Ser. A 62, 361–366.

    MathSciNet  MATH  Google Scholar 

  • Pyber, L. 1993b. Asymptotic results for permutation groups. Groups and Computation (L. Finkelstein and W.M. Kantor, eds.), DIMACS Series in Discrete Math. and Theoretical Comp. Sci. no. 11. Providence, RI: Amer. Math. Soc. 197–219.

    Google Scholar 

  • Pyber, L. 1995. The minimal degree of primitive permutation groups. Handbook of Combinatorics (R.L. Graham, M. Grötschel and L. Lovász eds.) Amsterdam: North-Holland (to appear).

    Google Scholar 

  • Read, R.C. 1968. The use of S-functions in combinatorial analysis. Canad. J. Math. 20, 808–841.

    MathSciNet  MATH  Google Scholar 

  • Ree, R. 1961. A family of simple groups associated with the simple Lie algebra of type (G 2). Amer. J. Math. 83, 432–462.

    MathSciNet  MATH  Google Scholar 

  • Ree R. 1964. Sur une famille de groupes de permutation doublement transitif. Canad. J. Math. 16, 797–820.

    MathSciNet  MATH  Google Scholar 

  • Robinson, D.J.S. 1972. Finiteness Conditions and Generalized Soluble Groups. Berlin: Springer-Verlag.

    Google Scholar 

  • Rotman, J.L. 1995. An Introduction to the Theory of Groups. 4th ed. Graduate Texts in Math. no. 148. New York: Springer-Verlag.

    Google Scholar 

  • Royle, G.F. 1987. Transitive groups of degree twelve. J. Symbolic Comput. 4, 255–268.

    MathSciNet  MATH  Google Scholar 

  • Samuel, P. 1988. Projective Geometry. New York: Springer-Verlag.

    Google Scholar 

  • Scott, L.L. 1980. Representations in characteristic p. The Santa Cruz Conference on Finite Groups (B. Cooperstein and G. Mason eds.), Proc. Sympos. Pure Math. no. 37. Providence, RI: Amer. Math. Soc. 319–331.

    Google Scholar 

  • Scott, W.R. 1964. Group Theory. Englewood Cliffs, NJ: Prentice-Hall. (reprinted: 1987, New York: Dover Publ.)

    Google Scholar 

  • Schreier, J. and S. M. Ulam. 1936. Über die Automorphismen der Permutation-sgruppe der natürlichen Zahlenfolge. Fund. Math. 28, 258–260.

    MATH  Google Scholar 

  • Schur, I. 1908. Neuer beweis eines satzes von W. Burnside. Jahresbericht der Deutsch. Math. Ver. 17, 171–176 (= Gesammelte Abhandlungen I 266-271).

    MATH  Google Scholar 

  • Schur, I. 1933. Zur Theorie der einfach transitiven Permutationsgruppen. Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Klasse 598–623 (= Gesammelte Abhandlungen III, 266-291).

    Google Scholar 

  • Schur, I. 1973. Gesammelte Abhandlungen, I-III. Berlin: Springer-Verlag.

    Google Scholar 

  • Seager, S.M. 1987. The rank of a finite primitive solvable permutation group. J. Algebra 105, 389–394.

    MathSciNet  MATH  Google Scholar 

  • Seager, S.M. 1988. A bound on the rank of primitive solvable permutation groups. J. Algebra 116, 342–352.

    MathSciNet  MATH  Google Scholar 

  • Segal, D. 1974. A note on finitary permutation groups. Arch. Math. 25, 470–471.

    MATH  Google Scholar 

  • Semmes, S.W. 1981. Endomorphisms of infinite symmetric groups. Abstracts Amer. Math. Soc. 2, 426.

    Google Scholar 

  • Serre, J.P. 1980. Trees. New York: Springer-Verlag.

    Google Scholar 

  • Shalev, A. 1994. On the fixity of linear groups. Proc. London Math. Soc. (3)68, 265–293.

    MathSciNet  Google Scholar 

  • Shaw, R.H. 1952. Remark on a theorem of Probenius. Proc. Amer. Math. Soc. 3, 970–972.

    MathSciNet  MATH  Google Scholar 

  • Shelah, S. and S.R. Thomas. 1988. Implausible subgroups of infinite symmetric groups. Bull. London Math. Soc. 20, 313–318.

    MathSciNet  MATH  Google Scholar 

  • Shelah, S. and S.R. Thomas. 1989. Subgroups of small index in infinite symmetric groups. J. Symbolic Logic 54, 95–99.

    MathSciNet  MATH  Google Scholar 

  • Sheppard, J.A.H. and J. Wiegold. 1963. Transitive permutation groups and groups with finite derived groups. Math. Z. 81, 279–285.

    MathSciNet  Google Scholar 

  • Short, M. 1992. The primitive soluble permutation groups of degree less than 256.Lect. Notes in Math. no. 1519. Berlin: Springer-Verlag.

    MATH  Google Scholar 

  • Silvestri, R. 1979. Simple groups in the nineteenth century. Arch. Hist. Exact Sci. 20, 313–356.

    MathSciNet  MATH  Google Scholar 

  • Sims, C.C. 1967. Graphs and permutation groups. Math. Z. 95, 76–86.

    MathSciNet  MATH  Google Scholar 

  • Sims, C.C. 1970. Computational methods in the study of permutation groups. Computational Problems in Abstract Algebra (J. Leech, ed.) New York: Pergamon Press. 169–184.

    Google Scholar 

  • Sims, C.C. 1978. Some group theoretic algorithms. Topics in Algebra, Proceedings, Canberra, 1978. Lect. Notes in Math. no. 697. New York: Springer-Verlag. 108–124.

    Google Scholar 

  • Sims, C.C. 1994. Computation With Finitely Presented Groups. Cambridge Univ. Press, Cambridge.

    MATH  Google Scholar 

  • Smith, M.S. 1976. On the isomorphism of two simple groups of order 44,352,000. J. Algebra 41, 172–174.

    MathSciNet  MATH  Google Scholar 

  • Snapper, E. and R.J. Troyer. 1971. Metric Affine Geometry. New York: Academic Press. (reprinted: 1989, New York: Dover Publ.).

    Google Scholar 

  • Stoiler, G. 1963. Example of a proper subgroup of S which has a set-transitivity property. Bull. Amer. Math. Soc. 69, 220–221.

    MathSciNet  Google Scholar 

  • Suzuki, M. 1960. A new type of simple groups of finite order. Proc. Nat. Acad. Sci. U.S.A. 46, 868–870.

    MathSciNet  MATH  Google Scholar 

  • Suzuki, M. 1962. On a class of doubly transitive groups. Ann. Math. 75, 105–145.

    MATH  Google Scholar 

  • Szep, J. 1953. Bemerkung zu einem Satz von O. Ore. Publ Math. Debrecen 3, 81–82.

    MathSciNet  Google Scholar 

  • Taylor, D.E. 1974. Unitary block designs. J. Combin. Theory Ser. A 16, 51–56.

    Google Scholar 

  • Taylor, D.E. 1992. The Geometry of the Classical Groups. Sigma Series in Pure Math. Berlin: Helderman.

    MATH  Google Scholar 

  • Thompson, J.G. 1959. Finite groups with fixed point free automorphisms of prime order. Proc. Nat. Acad. Sci. U.S.A. 45, 578–581.

    MathSciNet  MATH  Google Scholar 

  • Thompson, J.G. 1970. Bounds for orders of maximal subgroups. J. Algebra 14, 135–138.

    MathSciNet  MATH  Google Scholar 

  • Thompson, T.M. 1983. From Error-Correcting Codes Through Sphere Packings to Simple Groups. Carus Math. Monograph no. 21. Washington, D.C.: Math. Assoc. Amer.

    Google Scholar 

  • Tits, J. 1952. Sur les groupes doublement transitifs continus. Comment. Math. Helv. 26, 203–224.

    MathSciNet  MATH  Google Scholar 

  • Tits, J. 1960. Les groupes simple de Suzuki et de Ree. Séminaire Bourbaki. no. 210.

    Google Scholar 

  • Tits, J. 1962. Ovoides et groupes de Suzuki. Arch. Math. 13, 187–198.

    MathSciNet  MATH  Google Scholar 

  • Tits, J. 1970. Sur le groupe des automorphismes d’un arbre. Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham). Berlin: Springer-Verlag.

    Google Scholar 

  • Tomkinson, M.F. 1987. Groups covered by finitely many cosets or subgroups. Comm. Algebra 15, 845–855.

    MathSciNet  MATH  Google Scholar 

  • Truss, J.K. 1985. The group of the countable universal graph, Math. Proc. Camb. Philos. Soc. 98, 213–245.

    MathSciNet  MATH  Google Scholar 

  • Truss, J.K. 1989. The group of almost automorphisms of the countable universal graph. Math. Proc. Camb. Philos. Soc. 105, 223–236.

    MathSciNet  MATH  Google Scholar 

  • Truss, J.K. 1991. Infinite simple permutation groups-a survey. Groups-St. Andrews 1989. vol. 2 (C.M. Campbell and E.F. Robertson eds.). London Math. Soc. Lect. Note Ser. no. 160. Cambridge: Cambridge Univ. Press. 463–484.

    Google Scholar 

  • Tsuzuku, T. 1982. Finite Groups and Finite Geometries. Cambridge Tracts in Math. no. 76. Cambridge: Cambridge Univ. Press.

    MATH  Google Scholar 

  • Vaughan-Lee, M. 1993. The Restricted Burnside Problem (2nd ed.). Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Weiss, M. J. 1935. On simply transitive groups. Bull. Amer. Math. Soc. 40, 401–405.

    Google Scholar 

  • Wiegold, J. 1974. Groups of finitary permutations. Arch. Math. 25, 466–469.

    MathSciNet  MATH  Google Scholar 

  • Wielandt, H. 1934. Abschätzungen für den Grad einer Permutationsgrupppe von vorgeschreibenem Transitivitätsgrad. Dissertation. Univ. Berlin.

    Google Scholar 

  • Wielandt, H. 1935. Zur Theorie der einfach transitiven Permutationsgruppen. Math. Z. 63, 582–587.

    Google Scholar 

  • Wielandt, H. 1958. Über die Existenz von Normalteilern in endlichen Gruppen. Math. Nachr. 18, 274–280.

    MathSciNet  MATH  Google Scholar 

  • Wielandt, H. 1959. Ein Beweis für die Existenz von Sylow Gruppen. Arch. Math. 10, 401–402.

    MathSciNet  MATH  Google Scholar 

  • Wielandt, H. 1960a. Über den Transitivitätsgrad von Permutationsgruppen. Math. Z. 74, 297–298.

    MathSciNet  MATH  Google Scholar 

  • Wielandt, H. 1960b. Infinite Permutation Groups. Lecture notes. Tübingen: Univ. Tübingen.

    Google Scholar 

  • Wielandt, H. 1962. Subnormale Hüllen in Permutationsgruppen. Math. Z. 79, 381–388.

    MathSciNet  MATH  Google Scholar 

  • Wielandt, H. 1964. Finite Permutation Groups. New York: Academic Press.

    Google Scholar 

  • Wielandt, H. 1967a. On automorphisms of doubly transitive permutation groups. Proc. Internat. Conf. Theory of Groups, Canberra, 1965 (L.G. Kovács and B.H. Neumann, eds.) New York: Gordon and Breach.

    Google Scholar 

  • Wielandt, H. 1967b. Endliche k-homogene Permutationsgruppen. Math. Z. 101,142.

    Google Scholar 

  • Wielandt, H. 1969. Permutation Groups Through Invariant Relations and Invariant Functions. Lecture notes. Columbus, OH: Ohio State Univ.

    Google Scholar 

  • Wielandt, H. 1971a. Subnormal Subgroups and Permutation Groups. Lecture notes. Columbus, OH: Ohio State Univ.

    Google Scholar 

  • Wielandt, H. 1971b. Subnormale Untergruppen endlicher Gruppen. Lecture notes. Tübingen: Univ. Tübingen.

    Google Scholar 

  • Wielandt, H. 1974. Normalteiler in 3-transitiven Gruppen. Math. Z. 136, 243–244.

    MathSciNet  MATH  Google Scholar 

  • Wielandt, H. 1994. Mathematische Werke-Mathematical Works (Vol. 1: Group Theory) (B. Huppert and H. Schneider eds.). Berlin: Walter de Gruyter.

    Google Scholar 

  • Wielandt, H. and B. Huppert. 1958. Normalteiler mehrfach transitiver Permutationsgruppen. Arch. Math. (Basel) 9, 18–26.

    MathSciNet  MATH  Google Scholar 

  • Williamson, A.G. 1973. On primitive permutation groups containing a cycle. Math. Z. 130, 159–162.

    MathSciNet  MATH  Google Scholar 

  • Witt, E. 1938a. Die 5-fach transitiven Gruppen von Mathieu. Abh. Math. Sem. Univ. Hamburg 12, 256–264.

    Google Scholar 

  • Witt, E. 1938b. Uber Steinersche Systeme. Abh. Math. Sem. Univ. Hamburg 12, 265–275.

    Google Scholar 

  • Wong, W.J. 1967. Determination of a class of primitive groups. Math. Z. 99, 235–246.

    MathSciNet  MATH  Google Scholar 

  • Yoshizawa, M. 1979. On infinite four-transitive permutation groups. J. London Math. Soc. (2)19, 437–438.

    MathSciNet  Google Scholar 

  • Zaigier, D. 1990. A one-sentence proof that every prime p = 1 mod 4 is a sum of two squares. Amer. Math. Monthly 97, 144.

    Google Scholar 

  • Zassenhaus, H. 1935. Über transitive Erweiterungen gewisser Gruppen aus Automorphismen endlicher mehrdimensionalar Geometrien. Math. Ann. 111, 748–759.

    MathSciNet  Google Scholar 

  • Zassenhaus, H. 1936. Über endliche Fastkürper. Abh. Math. Sem. Univ. Hamburg 11, 187–220.

    Google Scholar 

  • Zassenhaus, H. 1987. On Frobenius groups II: universal completion of nearfields of finite degree over a field of reference. Result. Math. 11, 317–358.

    MathSciNet  MATH  Google Scholar 

  • Zelmanov, E.I. 1991a. Solution of the restricted Burnside problem for groups of odd exponent. Math. USSR Ixv. 36, 41–60.

    MathSciNet  Google Scholar 

  • Zelmanov, E.I. 1991b. On the restricted Burnside problem. Proc. Internat. Congress Math. (Kyoto, 1990). Tokyo: Math. Soc. Japan.

    Google Scholar 

  • Znoiko, D. V. 1977. Automorphism Groups of Regular Trees. Math. USSR Sb. 32, 109–115.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dixon, J.D., Mortimer, B. (1996). Examples and Applications of Infinite Permutation Groups. In: Permutation Groups. Graduate Texts in Mathematics, vol 163. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0731-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0731-3_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6885-7

  • Online ISBN: 978-1-4612-0731-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics