Skip to main content

Role of Submerged Macrophytes for the Microbial Community and Dynamics of Dissolved Organic Carbon in Aquatic Ecosystems

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 131))

Abstract

Examination of the multifaced functions of submerged macrophytes in shallow lakes has once again placed emphasis on the habitat characteristics of the vegetation for fish and motile invertebrate communities. The habitat support functions of the macrophytic community are critical to these animals for refuge and related cryptic behavioral functions. We argue here, however, that much more fundamental structuring of microbial metabolism and biogeochemical cycling of the ecosystem result from the development of submerged macrophytic communities. These metabolic functions not only control biogeochemical cycling within these lake ecosystems but are essential to the success of diverse integrated higher trophic levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allanson, B.R. The fine structure of the periphyton of Cham sp. and Potamogeton natans from Wytham Pond, Oxford, and its significance to the macrophyte-periphyton metabolic model of R.G. Wetzel and H.L. Allen. Freshwat. Biol. 3: 535–542; 1973.

    Article  Google Scholar 

  • Allen, H.L. Primary productivity, chemo-organotrophy, and nutritional interactions of epiphytic algae and bacteria on macrophytes in the littoral of a lake. Ecol. Monogr. 41: 97–127; 1971.

    Article  Google Scholar 

  • Benner, R.; Hodson, R.E.; Kirchman, D. Bacterial abundance and production on mangrove leaves during initial stages of leaching and biodegradation. Arch. Hydrobiol. Beih. Ergebn. Limnol. 31: 19–26; 1988.

    Google Scholar 

  • Beveridge, T.J.; Graham, L.L. Surface layers of bacteria. Microbiol. Rev. 55: 684–705; 1991.

    PubMed  CAS  Google Scholar 

  • Blum, L.K.; Mills, A.L. Microbial growth and activity during the initial stages of seagrass decomposition. Mar. Ecol. Progr. Ser. 70: 73–82; 1991.

    Article  Google Scholar 

  • Börsheim, K.Y.; Andersen, S. Grazing and food selection by crustacean Zooplankton compared to production of bacteria and phytoplankton in a shallow Norwegian mountain lake. J. Plankton Res. 9: 367–379; 1987.

    Article  Google Scholar 

  • Burkholder, J.M.; Wetzel, R.G. Epiphytic microalgae on natural substrata in a hardwater lake: seasonal dynamics of community structure, biomass and ATP content. Arch. Hydrobiol. Suppl. 83: 1–56; 1989.

    Google Scholar 

  • Carlton, R.G.; Wetzel, R.G. Distributions and fates of oxygen in periphyton communities. Can. J. Bot. 65: 1031–1037; 1987.

    Article  CAS  Google Scholar 

  • Carlton, R.G.; Wetzel, R.G. Phosphorus flux from lake sediments: effect of epipelic algal photosynthesis. Limnol. Oceanogr. 33: 562–570; 1988.

    Article  CAS  Google Scholar 

  • Carter, S.M. Herbivory by Donacia rufescens Lacordaire and Donacia cincticornis Newman on the white water-lily, Nymphaea odorata Aiton. M.Sc. thesis, Univ. Alabama, Tuscaloosa; 1995.

    Google Scholar 

  • Cole, J.J.; Findlay, S.; Pace, M.L. Bacterial production in fresh and saltwater ecosystems: A cross-system overview. Mar. Ecol. Progr. Ser. 43: 1–10; 1988.

    Article  Google Scholar 

  • Coveney, M.F.; Wetzel, R.G. Biomass, production, and specific growth rate of bacterio-plankton and coupling to phytoplankton in an oligotrophic lake. Limnol. Oceanogr. 40: 1187–1200; 1995.

    Article  Google Scholar 

  • del Giordio, P.A.; Peters, R.H. Patterns in planktonic P:R ratios in lakes: influence of alke trophy and dissolved organic carbon. Limnol. Oceanogr. 39: 772–787; 1994.

    Article  Google Scholar 

  • Dickerman, J.A.; Wetzel, R.G. Clonal growth in Typha latifolia: population dynamics and demography of the ramets. J. Ecol. 73: 535–552; 1985.

    Article  Google Scholar 

  • Fletcher, M. The physiological activity of bacteria attached to solid surfaces. Adv. Microb. Physiol. 32: 53–85; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher, M.; Floodgate, G.D. An electron-microscopic demonstration of an acidic polysac-charide involved in the adhesion of a marine bacterium to solid surfaces. J. Gen. Microbiol. 74: 325–334; 1973.

    CAS  Google Scholar 

  • Fletcher, M.; Marshall, K.C. Are solid surfaces of ecological significance to aquatic bacteria? Adv. Microb. Ecol. 6: 199–236; 1982.

    Article  CAS  Google Scholar 

  • Hessen, D.O. Dissolved organic carbon in a humic lake: effects on bacterial production and respiration. Hydrobiologia 229: 115–123; 1992.

    Article  CAS  Google Scholar 

  • Hossell, J.; Baker, J.H. Epiphytic bacteria of the freshwater plant Ranunculus penicHiatus: enumeration, distribution and identification. Arch. Hydrobiol. 86: 322–337; 1979.

    Google Scholar 

  • Hutchinson, G.E. A treatise on limnology. III. Limnological botany. New York: John Wiley & Sons; 1975.

    Google Scholar 

  • Jeppesen, E.; Sortkjaer, O.; Sondergaard, M.; Erlandsen, M. Impact of a trophic cascade on heterotrophic bacterioplankton production in two shallow fish-manipulated lakes. Arch. Hydrobiol. Beih. Ergebn. Limnol. 37: 219–231; 1992.

    Google Scholar 

  • Kim, B.; Wetzel, R.G. The effect of dissolved humic substances on the alkaline phosphatase and the growth of microalgae. Verh. Int. Verein. Limnol. 25: 122–128; 1993.

    Google Scholar 

  • Kirchman, D.L.; Mazzella, L.; Mitchell, R.; Alberte, R.S. Bacterial epiphytes on Zostera marina surfaces. Biol. Bull. 159: 461–462; 1980.

    Google Scholar 

  • Kirchman, D.L.; Mazzella, L.; Alberte, R.S.; Mitchell, R. Epiphytic bacterial production on Zostera marina. Mar. Ecol. Progr. Ser. 15: 117–123; 1984.

    Article  Google Scholar 

  • Laycock, R.A. The detrital food chain based on seaweeds. I. Bacteria associated with the surface of Laminaria fronds. Mar. Biol. 25: 223–231; 1974.

    Article  Google Scholar 

  • Lemke, M.J.; Churchill, P.F.; Wetzel, R.G. The effect of substrate and cell surface hydro-phobicity on phosphate uptake in bacteria. Appl. Environ. Microbiol. 61: 913–919; 1995.

    PubMed  CAS  Google Scholar 

  • Lock, M.A. River epilithon—a light and organic energy transducer. In: Lock, M.A.; Williams, D.D., eds. Perspectives in running water ecology. New York: Plenum Press; 1981:3–40.

    Google Scholar 

  • Lock, M.A. The dynamics of dissolved and particulate organic material over the substratum of water bodies. In: Wotton, R.S., ed. The biology of particles in aquatic systems. Boca Raton, FL: CRC Press; 1990:117–144.

    Google Scholar 

  • Lock, M.A.; Wallace, R.R.; Costerton, J.W.; Ventullo, R.M.; Charlton, S.E. River epilithon (biofilm): toward a structural functional model. Oikos 42: 10–22; 1984.

    Article  Google Scholar 

  • Losee, R.F.; Wetzel, R.G. Littoral flow rates within and around submersed macrophyte communities. Freshwat. Biol. 29: 7–17; 1993.

    Article  Google Scholar 

  • Lyche, A.; Andersen, T.; Christoffersen, K.; Hessen, D.O.; Hansen, P.H.B.; Klysner, A. Mesocosm tracer studies. 2. The fate of primary production and the role of consumers in the pelagic carbon cycle of a mesotrophic lake. Limnol. Oceanogr. 41: 475–487; 1996.

    Article  CAS  Google Scholar 

  • Madsen, T.V.; Warncke, E. Velocities of currents around and within submerged aquatic vegetation. Arch. Hydrobiol. 97: 389–394; 1983.

    Google Scholar 

  • Mann, C.J.; Wetzel, R.G. Dissolved organic carbon and its utilization in a riverine wetland ecosystem. Biogeochemistry 31: 99–120; 1995.

    Article  CAS  Google Scholar 

  • Mann, C.J.; Wetzel, R.G. Loading and utilization of dissolved organic carbon from emergent macrophytes. Aquat. Bot. 53: 61–72; 1996.

    Article  Google Scholar 

  • Mazure, H.G.F.; Field, J.G. Density and ecological importance of bacteria on kelp fronds in an upwelling region. J. Exp. Mar. Biol. Ecol. 43: 173–182; 1980.

    Article  Google Scholar 

  • Mickle, A.M.; Wetzel, R.G. Effectiveness of submersed angiosperm-epiphyte complexes on exchange of nutrients and organic carbon in littoral systems. II. Dissolved organic carbon. Aquat. Bot. 4: 317–329; 1978.

    Article  CAS  Google Scholar 

  • Mickle, A.M.; Wetzel, R.G. Effectiveness of submersed angiosperm-epiphyte complexes on exchange of nutrients and organic carbon in littoral systems. HI. Refractory organic carbon. Aquat. Bot. 6: 339–355; 1979.

    Article  CAS  Google Scholar 

  • Moeller, R.E.; Burkholder, J.M.; Wetzel, R.G. Significance of sedimentary phosphorus to a rooted submersed macrophytes (Najas flexilis (Willd.) Rostk. and Schmidt) and its algal epiphytes. Aquat. Bot. 32: 261–281; 1988.

    Article  Google Scholar 

  • Moran, M.A.; Hodson, R.E. Formation and bacterial utilization of dissolved organic carbon derived from detrital lignocellulose. Limnol. Oceanogr. 34: 1034–1047; 1989.

    Article  CAS  Google Scholar 

  • Moran, M.A.; Zepp, R.G. Role of photolysis in the formation of biologically labile compounds from dissolved organic matter. Limnol. Oceanogr. (in press).

    Google Scholar 

  • Moriarty, D.J.W.; Boon, P.I.; Hansen, J.A.; Hunt, W.G.; Poiner, I.R. Microbial biomass and productivity in seagrass beds. Geomicrobiol. J. 4: 21–51; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Neely, R.K.; Wetzel, R.G. Simultaneous use of 14C and 3H to determine autotrophic roduction and bacterial protein production in periphyton. Microb. Ecol. 30: 227–237; 1995.

    Article  CAS  Google Scholar 

  • Newell, S.Y. Fungi and bacteria in or on leaves of eelgrass (Zostera marina L.) from Chesapeake Bay. Appl. Environ. Microbiol. 41: 1219–1224; 1981.

    PubMed  CAS  Google Scholar 

  • Otsuki, A.; Wetzel, R.G. Release of dissolved organic matter by autolysis of a submerged macrophyte, Scirpus subterminalis. Limnol. Oceanogr. 19: 842–845; 1974.

    Article  Google Scholar 

  • Peduzzi, P.; Herndl, G.J. Decomposition and significance of seagrass leaf litter (Cymodocea nodosa) for the microbial foodweb in coastal waters (Gulf of Trieste, northern Adriatic Sea). Mar. Ecol. Progr. Ser. 71: 163–174; 1994.

    Article  Google Scholar 

  • Phillips, G.L.; Eminson, D.; Moss, B. A mechanism to account for macrophyte decline in progressively eutrophicated fresh waters. Aquat. Bot. 4: 103–126; 1978.

    Article  Google Scholar 

  • Raven, J.A. Energetics and transport in aquatic plants. New York: Alan R. Liss, Inc.; 1984.

    Google Scholar 

  • Riber, H.H.; Wetzel, R.G. Boundary-layer and internal diffusion effects on phosphorus fluxes in lake periphyton. Limnol. Oceanogr. 32: 1181–1194; 1987.

    Article  CAS  Google Scholar 

  • Rich, P.H.; Wetzel, R.G.; Thuy, N.V. Distribution, production and role of aquatic macrophytes in a southern Michigan marl lake. Freshwat. Biol. 1: 3–21; 1971.

    Article  Google Scholar 

  • Roemer, S.C.; Hoagland, K.D.; Rosowski, J.R. Development of a freshwater periphyton community as influenced by diatom mucilages. Can. J. Bot. 62: 1799–1813; 1984.

    Article  Google Scholar 

  • Round, F.E. The ecology of algae. Cambridge: Cambridge University Press; 1981.

    Google Scholar 

  • Sand-Jensen, K.; Mebus, J.R. Fine-scale patterns of water velocity within macrophyte patches in streams. Oikos 76:169–180; 1996.

    Article  Google Scholar 

  • Sculthorpe, C.D. The biology of aquatic vascular plants. New York: St. Martin’s Press; 1967.

    Google Scholar 

  • Søndergaard, M. Heterotrophic utilization and decomposition of extracellular organic carbon (EOC) released by the aquatic angiosperm Littorella uniflora. Aquat. Bot. 16: 59–73; 1983.

    Article  Google Scholar 

  • Søndergaard, M. Extracellular organic carbon (EOC) in the genus Carpophyllum (Phaeo-phyceae): Diel release patterns and EOC lability. Mar. Biol. 104: 143–151; 1990.

    Article  Google Scholar 

  • Søndergaard, M. Organic carbon pools in two Danish lakes: flow of carbon to bac-terioplankton. Verh. Int. Verein. Limnol. 25: 593–598; 1993.

    Google Scholar 

  • Søndergaard, M.; Sand-Jensen, K. Total autotrophic production in oligotrophic Lake Kal-gaard, Denmark. Verh. Int. Verein. Limnol. 20: 667–673; 1979.

    Google Scholar 

  • Søndergaard, M.; Wetzel, R.G. Photorespiration and internal recycling of CO2 in the submersed angiosperm Scirpus subterminalis Torr. Can. J. Bot. 58: 591–598; 1980.

    Article  Google Scholar 

  • Spencer, W.E.; Wetzel, R.G. Acclimation of photosynthesis and dark respiration of a submersed angiosperm beneath the ice in a temperate lake. Plant Physiol. 101: 985–991; 1993.

    PubMed  CAS  Google Scholar 

  • Sutherland, I.W. Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides. Annu. Rev. Microbiol. 39: 243–270; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Thomaz, S.M.; Wetzel, R.G. [3H] leucine incorporation methodology to estimate epiphytic bacterial biomass production. Microb. Ecol. 29: 63–70; 1995.

    Article  CAS  Google Scholar 

  • Tranvik, L. Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 29: 107–114; 1992.

    Article  Google Scholar 

  • van Loosdrecht, M.C.M.; Lyklema, J.; Norde, W.; Zehnder, A.J.B. Influence of interfaces on microbial activity. Microbiol. Rev. 54: 75–87; 1990.

    PubMed  Google Scholar 

  • Velji, M.I.; Albright, L J. Microscopic enumeration of attached marine bacteria of seawater, marine sediment, fecal matter, and kelp blade samples following pyrophosphate and ultrasound treatments. Can. J. Microbiol. 32: 121–126; 1986.

    Article  Google Scholar 

  • Westlake, D.F. Comparisons of plant productivity. Biol. Rev. 38: 385–425; 1963.

    Article  Google Scholar 

  • Wetzel, R.G. Limnology. 2nd Ed. Philadelphia: Saunders College Publishing; 1983a.

    Google Scholar 

  • Wetzel, R.G. Attached algal-substrata interactions: fact or myth, and when and how? In: Wetzel, R.G., ed. Periphyton in freshwater ecosystems. The Hague: Dr. W. lunk Publishers; 1983b: 207–215.

    Chapter  Google Scholar 

  • Wetzel, R.G. Land-water interfaces: metabolic and limnological regulators. Verh. Int. Verein. Limnol. 24: 6–24; 1990.

    Google Scholar 

  • Wetzel, R.G. Extracellular enzymatic interactions in aquatic ecosystems: storage, redistribution, and interspecific communication. In: Chróst, R.J., ed. Microbial enzymes in aquatic environments. New York: Springer-Verlag; 1991: 6–28.

    Google Scholar 

  • Wetzel, R.G. Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229: 181–198; 1992.

    Article  CAS  Google Scholar 

  • Wetzel, R.G. Microcommunities and microgradients: linking nutrient regeneration, microbial mutualism, and high sustained aquatic primary production. Netherlands J. Aquat. Ecol. 27: 3–9; 1993a.

    Article  Google Scholar 

  • Wetzel, R.G. Humic compounds from wetlands: complexation, inactivation, and reactivation of surface-bound and extracellular enzymes. Verh. Int. Verein. Limnol. 25: 122–128; 1993b.

    CAS  Google Scholar 

  • Wetzel, R.G. Death, detritus, and energy flow in aquatic ecosystems. Freshwat. Biol. 33: 83–89; 1995.

    Article  Google Scholar 

  • Wetzel, R.G. Benthic algae and nutrient cycling in lentic freshwater ecosystems. In: Stevenson, R.J.; Bothwell, M.L.; Lowe, R.L., eds. Algal ecology: freshwater benthic ecosystems. New York: Academic Press; 1996: 641–667.

    Google Scholar 

  • Wetzel, R.G.; Allen, H.L. Functions and interactions of dissolved organic matter and the littoral zone in lake metabolism and eutrophication. In: Kajak, Z.; Hillbricht-Illkowska, A., eds. Productivity problems of fresh waters. Warsaw: PAN Publishers; 1970: 333–347.

    Google Scholar 

  • Wetzel, R.G.; Howe, M.J. Population dynamics and seasonal growth and biomass patterns of an emergent rush (Juncus effusus L.) in a subtemperate Alabama wetland. Aquat. Bot. (in press).

    Google Scholar 

  • Wetzel, R.G.; Rich, P.H.; Miller, M.C.; Allen, H.L. Metabolism of dissolved and paniculate detrital carbon in a temperate hard-water lake. Mem. Ist. Ital. Idrobiol. 29(suppl.):185–243; 1972.

    Google Scholar 

  • Wetzel, R.G.; Brammer, E.S.; Forsberg, C. Photosynthesis of submersed macrophytes in acidified lakes. I. Carbon fluxes and recycling of CO2 in Juncus bulbosus L. Aquat. Bot. 19: 329–342; 1984.

    Article  Google Scholar 

  • Wetzel, R.G.; Hatcher, P.G.; Bianchi, T.S. Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol. Oceanogr. 40: 1369–1380; 1995.

    Article  CAS  Google Scholar 

  • Wetzel, R.G.; Ward, A.K.; Stock, M. Effects of natural dissolved organic matter on mucilaginous matrices of biofilm communities. Arch. Hydrobiol. 140:1–11; 1997.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wetzel, R.G., Søndergaard, M. (1998). Role of Submerged Macrophytes for the Microbial Community and Dynamics of Dissolved Organic Carbon in Aquatic Ecosystems. In: Jeppesen, E., Søndergaard, M., Søndergaard, M., Christoffersen, K. (eds) The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, vol 131. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0695-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0695-8_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6871-0

  • Online ISBN: 978-1-4612-0695-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics