Skip to main content

Part of the book series: Statistics for Industry and Technology ((SIT))

Abstract

In this chapter, (continuous) positive Linnik and (nonnegative integer valued) discrete Linnik random variables are discussed. Rates of convergence and first terms of both the Edgeworth expansions and the expansions in the exponent of the distribution functions of certain sums of such random variables with nonnegative strictly stable as well as discrete stable limit laws are considered.

I belong to the last generation of students learning the basic knowledge of statistics by Yuri Vladimirovitsch Linnik. Only a few weeks before he died I took my examination in Statistics. I remember this examination because Prof. Linnik welcomed me in German and he asked me (in German) about properties of “Maximum—LikelihoodSchätzungen.” Never before I had heard these German terms. I was prepared to answer as usually in Russian. So I learned from Prof. Linnik not only to like statistics but also during the examination that likelihoodis an old English word for probability which is used in German statistical terms too. Gerd Christoph

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleskeviciene, A. K. and Statulevicius, V. A. (1995). Asymptotic expansions in the approximation by the Poisson law Lith. Math. J. 35, 309–329.

    MathSciNet  MATH  Google Scholar 

  2. Barbour, A. D., Holst, L. and Janson, S. (1992). Poisson Approximation Oxford: Clarendon Press.

    MATH  Google Scholar 

  3. Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  4. Bondesson, L., Kristiansen, G. K. and Steutel, F. W. (1996). Infinite divisibility of random variables and their integer Parts Statistics Probability Letters, 28 271–278.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cekanavicius, V. (1997). Asymptotic expansion in the exponent: a compound Poisson approach Advances in Applied Probability, 29 374–387.

    Article  MathSciNet  MATH  Google Scholar 

  6. Christoph, G. and Schreiber, K. (1998a). Discrete stable random variables Statistics Probability Letters, 37 243–247.

    Article  MathSciNet  MATH  Google Scholar 

  7. Christoph, G. and Schreiber, K. (1998b). The generalized discrete Linnik distributions, In Advances in Stochastic Models for Reliability Quality and Safety (Eds., W. Kahle et al.), pp. 3–18, Boston: Birkhäuser.

    Chapter  Google Scholar 

  8. Christoph, G. and Schreiber, K. (1998c). Rates of convergence to stable and discrete stable laws, In Proceedings of 7th Vilnius Conference on Probability Theory and Mathematical Statistics and 22nd European Meeting of Statisticians (Eds., B. Grigelionis et al.), Vilnius 1998, Amsterdam: VSP Publishers, Preprint Nr. 36/1998 DePartment of Mathematics, Otto-vonGuericke University Magdeburg (submitted).

    Google Scholar 

  9. Christoph, G. and Schreiber, K. (1998d). Shifted and scaled Sibuya distributions and discrete self-decomposability, Preprint Nr. 24/1998, DePartment of Mathematics, Otto-von-Guericke University Magdeburg (submitted)

    Google Scholar 

  10. Christoph, G. and Wolf, W. (1993). Convergence Theorems with a Stable Limit Law Math. Research, 70 Berlin: Akademie-Verlag.

    Google Scholar 

  11. Devroye, L. (1990). A note on Linnik’s distribution Statistics Probability Letters, 9 305–306.

    Article  MathSciNet  MATH  Google Scholar 

  12. Devroye, L. (1993). A triptych of discrete distributions related to the stable law Statistics Probability Letters, 18349–351.

    Article  MathSciNet  MATH  Google Scholar 

  13. Feller, W. (1971). An Introduction to Probability Theory and its Applications Vol. 2, New York: John Wiley & Sons.

    Google Scholar 

  14. Fish, M. and Varadarajan, V. S. (1963). A condition for absolute continuity of infinitely divisible distribution functions Z. Wahrscheinlichkeitstheorie verw. Gebiete, 1 335–339.

    Article  Google Scholar 

  15. Franken, P. (1964). Approximation der Verteilungen von Summen unabhängiger nichtnegativ ganzzahliger Zufallsgrößen durch Poissonsche Verteilungen Math. Nachr. 27, 303–340.

    Article  MathSciNet  MATH  Google Scholar 

  16. van Harn, K., Steutel, F. W. and Vervaat, W. (1982). Self-Decomposable discrete distributions and branching processes Z. Wahrscheinlichkeitstheorie verw. Gebiete, 61 97–118.

    Article  MATH  Google Scholar 

  17. Jayakumar, K. and Pillai, R. N. (1995). Discrete Mittag-Leffler distribution Statistics Probability Letters, 23 271–274.

    MathSciNet  MATH  Google Scholar 

  18. LeCam, L. (1960). An approximation theorem for Poisson binomial distribution Pacific Journal of Mathematics, 10 1181–1197.

    Article  MathSciNet  Google Scholar 

  19. Linnik, Yu. V. (1963). Linear forms and statistical criteria I,II Select. Translat. Math. Statist. Prob. 3 1–90. Transl. from Ukr. Mat. Zh, 5 (1953), 207–243 and 247–290.

    MathSciNet  Google Scholar 

  20. Loéve, M. (1977). Probability Theory Vol.1Fourth edition, Berlin: Springer-Verlag.

    Google Scholar 

  21. Lorz, U. and Heinrich, L. (1991). Normal and Poisson approximation of infinitely divisible distribution functions Statistics, 22 627–649.

    Article  MathSciNet  MATH  Google Scholar 

  22. Pakes, A. G. (1995). Characterization of discrete laws via mixed sums and Markov branching processes Stochastic Processes and their Applications, 55 285–300.

    Google Scholar 

  23. Pillai, R. N. (1990). On Mittag—Leffler functions and related distributions Annals of the Institute of Statistical Mathematics, 42 157–161.

    Article  MathSciNet  MATH  Google Scholar 

  24. Steutel, F. W. and van Harn, K. (1979). Discrete analogues of self-decomposability and stability Annals of Probability, 7 893–899.

    Article  MathSciNet  MATH  Google Scholar 

  25. Vellaisamy, P. and Chaudhuri, B. (1996). Poisson and compound Poisson approximations for random sums of random variables Journal of Applied Probability, 33 127–137.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Christoph, G., Schreiber, K. (2001). Positive Linnik and Discrete Linnik Distributions. In: Balakrishnan, N., Ibragimov, I.A., Nevzorov, V.B. (eds) Asymptotic Methods in Probability and Statistics with Applications. Statistics for Industry and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0209-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0209-7_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6663-1

  • Online ISBN: 978-1-4612-0209-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics