Skip to main content

Gait Anti-spoofing

  • Chapter
  • First Online:
Handbook of Biometric Anti-Spoofing

Abstract

Gait recognition is a relatively new biometric and as a result relatively little effort has yet been devoted to studying spoofing attacks against it. This chapter examines the effects of two different spoofing attacks against two different gait recognition systems. The first attack uses clothing impersonation where an attacker replicates the clothing of a legitimately enrolled individual. The second attack is a targeted attack where an imposter deliberately selects the legitimately enrolled subject whose gait signature is closest to the attacker. The analysis presented here reveals that both systems are vulnerable to both attacks. In particular, if both attacks are combined and the systems have acceptance thresholds set at the EER of their baseline performance, the attacks cause the FAR to rise from  5 % to between 60 and 95 %. The chapter describes two countermeasures that can be applied to minimise the effects of the spoofing attacks. Using the same acceptance thresholds the countermeasure to clothing attacks reduces the FAR performance under clothing impersonation from 40 to 15 %. Likewise, the targeting countermeasure reduces the FAR for targeted attacks from 20 to 2.5 % sufficient to even improve on the baseline performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nixon M, Carter J (2006) Automatic recognition by Gait. Proc IEEE 94(11):2013–2024

    Article  Google Scholar 

  2. Nixon MS, Tan TN, Chellappa R (2005) Human identification based on Gait. International series on biometrics. Springer, New York

    Google Scholar 

  3. Hadid A, Ghahramani M, Kellokumpu V, Pietikainen M, Bustard J, Nixon M (2012) Can gait biometrics be spoofed? In: 21st International Conference on Pattern Recognition (ICPR ), pp 3280–3283 2012

    Google Scholar 

  4. Kellokumpu V, Zhao G, Li SZ, Pietikainen M (2009) Dynamic texture based gait recognition. 3rd IAPR/IEEE International conference on biometrics, pp 1000–1009 2009

    Google Scholar 

  5. Kellokumpu V, Zhao G, Pietikäinen M (2010) Dynamic textures for human movement recognition. ACM International conference on image and video retrieval, CIVR ’10, 470–476 2010

    Google Scholar 

  6. Seely RD, Samangooei S, Middleton L, Carter J, Nixon M (2008) The University of Southampton multi-biometric tunnel and introducing a novel 3d gait dataset. In: Biometrics: theory, applications and systems. IEEE, 2008

    Google Scholar 

  7. Sarkar S, Phillips PJ, Liu Z, Vega IR, Grother P, Bowyer KW (2005) The humanid gait challenge problem: data sets, performance, and analysis. IEEE Trans Pattern Anal Mach Intell 27:162–177

    Article  Google Scholar 

  8. Seely RD (2010) On a three-dimensional gait recognition system. Ph.D. thesis, University of Southampton

    Google Scholar 

  9. Matovski D, Nixon M, Mahmoodi S, Carter J (2011) The effect of time on gait recognition performance. IEEE Trans Inf Forensics Secur 7(2):543–552

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Academy of Finland and the TABULA RASA project (http://www.tabularasa-euproject.org) funded under the 7th Framework Programme of the European Union (EU) (grant agreement number 25728) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Bustard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Bustard, J.D., Ghahramani, M., Carter, J.N., Hadid, A., Nixon, M.S. (2014). Gait Anti-spoofing. In: Marcel, S., Nixon, M., Li, S. (eds) Handbook of Biometric Anti-Spoofing. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-6524-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6524-8_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6523-1

  • Online ISBN: 978-1-4471-6524-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics