Skip to main content

Quantum Dot-Sensitized Solar Cells

  • Chapter
  • First Online:
Book cover Low-cost Nanomaterials

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Quantum dot sensitized solar cells, but in general semiconductor sensitized photovoltaic devices, have erupted in recent years as a new class of systems, differentiated for several reasons of the most common dye-sensitized solar cells. In this chapter, we review the enormous potentialities that have impelled the research in this field. We highlight the differences between quantum dot and dye-sensitized solar cells that we divide in five aspects: (i) Preparation of the sensitizer; (ii) Nanostructured electrode; (iii) Hole Transporting Material; (iv) Counter electrode, and (v) Recombination and surface states. Some of the optimization works performed in each one of these lines is revised, observing that further improvement can be expected. In fact, the recent breakthrough in photovoltaics with organometallic halide perovskites, originated by the intensive study on quantum dot-sensitized solar cells, is also revised, stressing the potentiality of these systems for the development of low cost photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tyler Miller Jr G (2007) Living in the environment. Thomson Brooks/Cole, London

    Google Scholar 

  2. United Nations Framework Convention on Climate Change (Text) (1992) (UNEP/WMO, Climate Change Secretariat, Geneva, 1992)

    Google Scholar 

  3. Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38(1):185–196

    MathSciNet  Google Scholar 

  4. Bisquert J, Cahen D, Hodes G, Rühle S, Zaban A (2004) Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. J Phys Chem B 108:8106–8118

    Google Scholar 

  5. O’ Regan B, Grätzel M (1991) A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Google Scholar 

  6. Peter LM (2011) The Grätzel cell: where next? J Phys Chem Lett 2:1861–1867

    Google Scholar 

  7. Hodes G (2008) Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. J Phys Chem C 112(46):17778–17787

    Google Scholar 

  8. Robel I, Subramanian V, Kuno M, Kamat PV (2006) Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J Am Chem Soc 128:2385–2393

    Google Scholar 

  9. Zaban A, Micic OI, Gregg BA, Nozik AJ (1998) Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 14(12):3153–3156

    Google Scholar 

  10. Mora-Seró I, Giménez S, Fabregat-Santiago F, Gómez R, Shen Q, Toyoda T, Bisquert J (2009) Recombination in quantum dot sensitized solar cells. Acc Chem Res 42(11):1848–1857

    Google Scholar 

  11. Leschkies SK, Divakar R, Basu J, Enache-Pommer E, Boercker JE, Carter CB, Kortshagen UR, Norris DJ, Aydil ES (2007) Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett 7(6):1793–1798

    Google Scholar 

  12. Hossain A, Yang GW, Parameswaran M, Jennings JR, Wang Q (2010) Mesoporous SnO2 spheres synthesized by electrochemical anodization and their application in CdSe-Sensitized Solar Cells. J Phys Chem C 114(49):21878–21884

    Google Scholar 

  13. Hossain MA, Jennings JR, Koh ZY, Wang Q (2011) Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities. ACS Nano 5(4):3172–3181

    Google Scholar 

  14. Hossain MA, Koh ZY, Wang Q (2012) PbS/CdS-sensitized mesoscopic SnO2 solar cells for enhanced infrared light harnessing. Phys Chem Chem Phys 14(20):7367–7374

    Google Scholar 

  15. Samadpour M, Giménez S, Boix PP, Shen Q, Calvo ME, Taghavinia N, zad AI, Toyoda T, Míguez H, Mora-Seró I (2012) Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells. Electrochimica Acta 75(0):139–147

    Google Scholar 

  16. Giménez S, Xu X, Lana-Villarreal T, Gómez R, Agouram S, Muñoz-Sanjosé V, Mora-Seró I (2010) Determination of limiting factors of photovoltaic efficiency in quantum dot sensitized solar cells: correlation between cell performance and structural properties. J Appl Phys 108:064310

    Google Scholar 

  17. Vogel R, Hoyer P, Weller H (1994) Quantum-sized Pbs, Cds, Ag2 s, Sb2s3, and Bi2s3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J Phys Chem 98(12):3183–3188

    Google Scholar 

  18. Lin SC, Lee YL, Chang CH, Shen YJ, Yang YM (2007) Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition. Appl Phys Lett 90(14)

    Google Scholar 

  19. Yu XY, Liao JY, Qiu KQ, Kuang DB, Su CY (2011) Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition. ACS Nano 5(12):9494–9500

    Google Scholar 

  20. Hu HW, Ding JN, Zhang S, Li Y, Bai L, Yuan NY (2013) Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells. Nanoscale Res Lett 8

    Google Scholar 

  21. Mora-Sero I, Gimenez S, Moehl T, Fabregat-Santiago F, Lana-Villareal T, Gomez R, Bisquert J (2008) Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode. Nanotechnology 19(42)

    Google Scholar 

  22. Guijarro N, Lana-Villarreal T, Mora-Sero I, Bisquert J, Gomez R (2009) CdSe quantum dot-sensitized TiO2 electrodes: effect of quantum dot coverage and mode of attachment. J Phys Chem C 113(10):4208–4214

    Google Scholar 

  23. Watson DF (2010) Linker-assisted assembly and interfacial electron-transfer reactivity of quantum dot-substrate architectures. J Phys Chem Lett 1:2299–2309

    Google Scholar 

  24. Giménez S, Mora-Seró I, Macor L, Guijarro N, Lana-Villarreal T, Gómez R, Diguna LJ, Shen Q, Toyoda T, Bisquert J (2009) Improving the performance of colloidal quantum dot sensitized solar cells. Nanotechnology 20:295204

    Google Scholar 

  25. Im SH, Lee YH, Seok SI, Kim SW, Kim SW (2010) Quantum-dot-sensitized solar cells fabricated by the combined process of the direct attachment of colloidal CdSe quantum dots having a ZnS glue layer and spray pyrolysis deposition. Langmuir 26(23):18576–18580

    Google Scholar 

  26. Zhu GA, Lv TA, Pan LK, Sun Z, Sun CQ (2011) All spray pyrolysis deposited CdS sensitized ZnO films for quantum dot-sensitized solar cells. J Alloy Compd 509(2):362–365

    Google Scholar 

  27. Benehkohal NP, Gonzalez-Pedro V, Boix PP, Chavhan S, Tena-Zaera R, Demopoulos GP, Mora-Sero I (2012) Colloidal PbS and PbSeS quantum dot sensitized solar cells prepared by electrophoretic deposition. J Phys Chem C 116(31):16391–16397

    Google Scholar 

  28. Salant A, Shalom M, Hod I, Faust A, Zaban A, Banin U (2010) Quantum dot sensitized solar cells with improved efficiency prepared using electrophoretic deposition. ACS Nano 4(10):5962–5968

    Google Scholar 

  29. Salant A, Shalom M, Tachan Z, Buhbut S, Zaban A, Banin U (2012) Quantum rod-sensitized solar cell: nanocrystal shape effect on the photovoltaic properties. Nano Lett 12(4):2095–2100

    Google Scholar 

  30. Santra PK, Kamat PV (2012) Tandem-layered quantum dot solar cells: tuning the photovoltaic response with luminescent ternary cadmium Chalcogenides. J Am Chem Soc 135(2):877–885

    Google Scholar 

  31. Lin S-C, Lee Y-L, Chang C-H, Shen Y-J, Yang Y-M (2007) Quantum-dot-sensitized solar cells: assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition. Appl Phys Lett 90:143517

    Google Scholar 

  32. Lee Y-L, Huang B-M, Chien H-T (2008) Highly efficient CdSe-Sensitized TiO2 Photoelectrode for quantum-dot-sensitized solar cell applications. Chem Mater 20(22):6903–6905

    Google Scholar 

  33. Martínez-Ferrero E, Mora-Seró I, Alberoa J, Giménez S, Bisquert J, Palomares E (2010) Charge transfer kinetics in CdSe quantum dot sensitized solar cells. Phys Chem Chem Phys 12:2819–2821

    Google Scholar 

  34. Shen Q, Kobayashi J, Diguna LJ, Toyoda T (2003) Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. Journal of Appl Phys 103(8)

    Google Scholar 

  35. Pernik DR, Tvrdy K, Radich JG, Kamat PV (2011) Tracking the adsorption and electron injection rates of CdSe quantum dots on TiO2: linked versus direct attachment. J Phys Chem C 115(27):13511–13519

    Google Scholar 

  36. Pan Z, Zhang H, Cheng K, Hou Y, Hua J, Zhong X (2012) Highly efficient inverted type-I CdS/CdSe Core/Shell Structure QD-sensitized solar cells. ACS Nano 6(5):3982–3991

    Google Scholar 

  37. Zhang H, Cheng K, Hou YM, Fang Z, Pan ZX, Wu WJ, Hua JL, Zhong XH (2012) Efficient CdSe quantum dot-sensitized solar cells prepared by a postsynthesis assembly approach. Chem Commun 48(91):11235–11237

    Google Scholar 

  38. Pan Z, Zhao K, Wang J, Zhang H, Feng Y, Zhong X (2013) Near infrared absorption of CdSexTe1–x alloyed quantum dot sensitized solar cells with More than 6 % efficiency and high stability. ACS Nano 7(6):5215–5222

    Google Scholar 

  39. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Google Scholar 

  40. Lee HJ, Yum J-H, Leventis HC, Zakeeruddin SM, Haque SA, Chen P, Seok SI, Grätzel M, Nazeeruddin MK (2008) cdse quantum dot-sensitized solar cells exceeding efficiency 1 % at full-sun intensity. J Phys Chem C 112:11600–11608

    Google Scholar 

  41. Liu L, Guo X, Li Y, Zhong X (2010) Bifunctional multidentate ligand modified highly stable water-soluble quantum dots. Inorg Chem 49(8):3768–3775

    Google Scholar 

  42. Jia S, Banerjee S, Herman IP (2008) Mechanism of the electrophoretic deposition of CdSe nanocrystal films: influence of the nanocrystal surface and charge. J Phys Chem C 112:162–171

    Google Scholar 

  43. Brown P, Kamat PV (2008) Quantum dot solar cells. Electrophoretic deposition of CdSe-C-60 composite films and capture of photogenerated electrons with nC(60) cluster shell. J Am Chem Soc 130(28):8890-+

    Google Scholar 

  44. Mane RS, Lokhande CD (2000) Chemical deposition method for metal chalcogenide thin films. Mater Chem Phys 65(1):1–31

    Google Scholar 

  45. Chang CH, Lee YL (2007) Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells. Appl Phys Lett 91(5)

    Google Scholar 

  46. Jung SW, Kim JH, Kim H, Choi CJ, Ahn KS (2010) CdS quantum dots grown by in situ chemical bath deposition for quantum dot-sensitized solar cells. J Appl Phys 110(4)

    Google Scholar 

  47. Sudhagar P, Jung JH, Park S, Lee YG, Sathyamoorthy R, Kang YS, Ahn H (2009) The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells. Electrochem Commun 11(11):2220–2224

    Google Scholar 

  48. Lee YL, Huang BM, Chien HT (2008) Highly efficient CdSe-Sensitized TiO2 photoelectrode for quantum-Dot-sensitized solar cell applications. Chem Mater 20(22):6903–6905

    Google Scholar 

  49. Itzhaik Y, Niitsoo O, Page M, Hodes G (2009) Sb2S3-sensitized nanoporous TiO2 solar cells. J Phys Chem C 113(11):4254–4256

    Google Scholar 

  50. Boix PP, Larramona G, Jacob A, Delatouche B, Mora-Sero I, Bisquert J (2012) Hole transport and recombination in all-solid Sb2S3-sensitized TiO2 solar cells using CuSCN as hole transporter. J Phys Chem C 116(1):1579–1587

    Google Scholar 

  51. Maiti N, Im SH, Lim CS, Seok SI (2012) A chemical precursor for depositing Sb2S3 onto mesoporous TiO2 layers in nonaqueous media and its application to solar cells. Dalton Trans 41(38):11569–11572

    Google Scholar 

  52. Gui EL, Kang AM, Pramana SS, Yantara N, Mathews N, Mhaisalkar S (2012) Effect of TiO2 mesoporous layer and surface treatments in determining efficiencies in antimony sulfide-(Sb2S3) sensitized solar cells. J Electrochem Soc 159(3):B247–B250

    Google Scholar 

  53. Lan GY, Yang ZS, Lin YW, Lin ZH, Liao HY, Chang HT (2009) A simple strategy for improving the energy conversion of multilayered CdTe quantum dot-sensitized solar cells. J Mater Chem 19(16):2349–2355

    Google Scholar 

  54. Samadpour M, Zad AI, Taghavinia N, Molaei M (2011) A new structure to increase the photostability of CdTe quantum dot sensitized solar cells. J Phys D Appl Phys 44(4)

    Google Scholar 

  55. Yang ZS, Chang HT (2010) CdHgTe and CdTe quantum dot solar cells displaying an energy conversion efficiency exceeding 2 %. Sol Energy Mater Sol Cells 94(12):2046–2051

    Google Scholar 

  56. Yu XY, Lei BX, Kuang DB, Su CY (2011) Highly efficient CdTe/CdS quantum dot sensitized solar cells fabricated by a one-step linker assisted chemical bath deposition. Chem Sci 2(7):1396–1400

    Google Scholar 

  57. Tachan Z, Shalom M, Hod I, Ruhle S, Tirosh S, Zaban A (2011) PbS as a highly catalytic counter electrode for polysulfide-based quantum dot solar cells. J Phys Chem C 115(13):6162–6166

    Google Scholar 

  58. Ju T, Graham RL, Zhai GM, Rodriguez YW, Breeze AJ, Yang LL, Alers GB, Carter SA (2010) High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperature. Appl Phys Lett 97(4)

    Google Scholar 

  59. Lee H, Leventis HC, Moon SJ, Chen P, Ito S, Haque SA, Torres T, Nuesch F, Geiger T, Zakeeruddin SM, Gratzel M, Nazeeruddin MK (2009) PbS and US quantum dot-sensitized solid-state solar cells: old concepts, new results. Adv Funct Mater 19(17):2735–2742

    Google Scholar 

  60. Lee HJ, Chen P, Moon SJ, Sauvage F, Sivula K, Bessho T, Gamelin DR, Comte P, Zakeeruddin SM, Il Seok S, Gratzel M, Nazeeruddin MK (2009) Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator. Langmuir 25(13):7602–7608

    Google Scholar 

  61. Lu P, Shi ZW, Walker AV (2010) Selective formation of monodisperse CdSe nanoparticles on functionalized self-assembled monolayers using chemical bath deposition. Electrochim Acta 55(27):8126–8134

    Google Scholar 

  62. Gorer S, Hodes G (1994) Quantum-size effects in the study of chemical solution deposition mechanisms of semiconductor-films. J Phys Chem 98(20):5338–5346

    Google Scholar 

  63. Sudhagar P, Gonzalez-Pedro V, Mora-Sero I, Fabregat-Santiago F, Bisquert J, Kang YS (2012) Interfacial engineering of quantum dot-sensitized TiO2 fibrous electrodes for futuristic photoanodes in photovoltaic applications. J Mater Chem 22(28):14228–14235

    Google Scholar 

  64. Niitsoo O, Sarkar SK, Pejoux C, Ruhle S, Cahen D, Hodes G (2006) Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells. J Photochem Photobiol A-Chem 181(2–3):306–313

    Google Scholar 

  65. Heo JH, Im SH, Kim HJ, Boix PP, Lee SJ, Seok SI, Mora-Sero I, Bisquert J (2012) Sb2S3-sensitized photoelectrochemical cells: open circuit voltage enhancement through the introduction of poly-3-hexylthiophene interlayer. J Phys Chem C 116(39):20717–20721

    Google Scholar 

  66. Lim CS, Im SH, Rhee JH, Lee YH, Kim HJ, Maiti N, Kang Y, Chang JA, Nazeeruddin MK, Gratzel M, Seok SI (2012) Hole-conducting mediator for stable Sb2S3-sensitized photoelectrochemical solar cells. J Mater Chem 22(3):1107–1111

    Google Scholar 

  67. Chang JA, Im SH, Lee YH, Kim H-J, Lim C-S, Heo JH, Seok SI (2012) Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. Nano Lett 12(4):1863–1867

    Google Scholar 

  68. Chang JA, Rhee JH, Im SH, Lee YH, Kim H-J, Seok SI, Nazeeruddin MK, Grätzel M (2010) High-performance nanostructured inorganic—Organic heterojunction solar cells. Nano Lett 10(7):2609–2612

    Google Scholar 

  69. Rodenas P, Song T, Sudhagar P, Marzari G, Han H, Badia-Bou L, Gimenez S, Fabregat-Santiago F, Mora-Sero I, Bisquert J, Paik U, Kang YS (2013) Quantum dot based heterostructures for unassisted photoelectrochemical hydrogen generation. Adv Energy Mater 3(2):176–182

    Google Scholar 

  70. Sudhagar P, Song T, Lee DH, Mora-Sero I, Bisquert J, Laudenslager M, Sigmund WM, Park WI, Paik U, Kang YS (2011) High open circuit voltage quantum dot sensitized solar cells manufactured with ZnO Nanowire arrays and Si/ZnO branched hierarchical structures. J Phys Chem Lett 2(16):1984–1990

    Google Scholar 

  71. Samadpour M, Gimenez S, Boix PP, Shen Q, Calvo ME, Taghavinia N, Zad AI, Toyoda T, Miguez H, Mora-Sero I (2012) Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells. Electrochim Acta 75:139–147

    Google Scholar 

  72. Niesen TP, De Guire MR (2002) Review: deposition of ceramic thin films at low temperatures from aqueous solutions. Solid State Ionics 151(1–4):61–68

    Google Scholar 

  73. Pathan HM, Lokhande CD (2004) Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bull Mater Sci 27(2):85–111

    Google Scholar 

  74. Froment M, Cachet H, Essaaidi H, Maurin G, Cortes R (1997) Metal chalcogenide semiconductors growth from aqueous solutions. Pure Appl Chem 69(1):77–82

    Google Scholar 

  75. Pawar SM, Pawar BS, Kim JH, Joo OS, Lokhande CD (2011) Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films. Curr Appl Phys 11(2):117–161

    Google Scholar 

  76. Lee H, Wang MK, Chen P, Gamelin DR, Zakeeruddin SM, Gratzel M, Nazeeruddin MK (2009) Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Lett 9(12):4221–4227

    Google Scholar 

  77. Hossain MA, Jennings JR, Shen C, Pan JH, Koh ZY, Mathews N, Wang Q (2012) CdSe-sensitized mesoscopic TiO2 solar cells exhibiting > 5 % efficiency: redundancy of CdS buffer layer. J Mater Chem 22(32):16235–16242

    Google Scholar 

  78. O’Mahony FTF, Lutz T, Guijarro N, Gomez R, Haque SA (2012) Electron and hole transfer at metal oxide/Sb2S3/spiro-OMeTAD heterojunctions. Energy Environ Sci 5(12):9760–9764

    Google Scholar 

  79. Sahu SN (1989) Aqueous electrodeposition of Inp semiconductor-Films. J Mater Sci Lett 8(5):533–534

    Google Scholar 

  80. Allongue P, Souteyrand E (1989) Semiconductor electrodes modified by electrodeposition of discontinuous metal-films. 1. Role of the film morphology. J Electroanal Chem 269(2):361–374

    Google Scholar 

  81. Switzer JA, Hung CJ, Bohannan EW, Shumsky MG, Golden TD, VanAken DC (1997) Electrodeposition of quantum-confined metal semiconductor nanocomposites. Adv Mater 9(4):334–000

    Google Scholar 

  82. Riveros G, Gomez H, Henriquez R, Schrebler R, Marotti RE, Dalchiele EA (2001) Electrodeposition and characterization of ZnSe semiconductor thin films. Sol Energy Mater Sol Cells 70(3):255–268

    Google Scholar 

  83. Rajeshwar, K.; deTacconi, N. R., Electrodeposition and characterization of nanocrystalline semiconductor films. Semiconductor Nanoclusters- Physical, Chemical, and Catalytic Aspects 1997, 103, 321-351

    Google Scholar 

  84. Lévy-Clément C, Katty A, Bastide S, Zenia F, Mora I, Munoz-Sanjose V (2002) A new CdTe/ZnO columnar composite film for Eta solar cells. Physica E 14:229–232

    Google Scholar 

  85. Lévy-Clément C, Tena-Zaera R, Ryan MA, Katty A, Hodes G (2005) CdSe sensitized p-CuSCN/Nanowire n-ZnO heterojunctions. Adv Mater 17:1512–1515

    Google Scholar 

  86. Lincot D (2005) Electrodeposition of semiconductors. Thin Solid Films 487(1–2):40–48

    Google Scholar 

  87. Savadogo O (1998) Chemically and electrochemically deposited thin films for solar energy materials. Sol Energy Mater Sol Cells 52(3–4):361–388

    Google Scholar 

  88. Behar D, Rubinstein I, Hodes G, Cohen S, Cohen H (1999) Electrodeposition of CdS quantum dots and their optoelectronic characterization by photoelectrochemical and scanning probe spectroscopies. Superlattices Microstruct 25(4):601–613

    Google Scholar 

  89. Han W, Cao LY, Huang JF, Wu JP (2009) Influence of pH value on PbS thin films prepared by electrodeposition. Mater Technol 24(4):217–220

    Google Scholar 

  90. Fernandes VC, Salvietti E, Loglio F, Lastraioli E, Innocenti M, Mascaro LH, Foresti ML (2009) Electrodeposition of PbS multilayers on Ag(111) by ECALE. J Appl Electrochem 39(11):2191–2197

    Google Scholar 

  91. Takahashi M, Ohshima Y, Nagata K, Furuta S (1993) Electrodeposition of Pbs films from acidic solution. J Electroanal Chem 359(1–2):281–286

    Google Scholar 

  92. Fantini MCA, Moro JR, Decker F (1988) Electrodeposition of Cdse films on Sno2-F coated glass. Solar Energy Mater 17(4):247–255

    Google Scholar 

  93. Kutzmutz S, Lang G, Heusler KE (2001) The electrodeposition of CdSe from alkaline electrolytes. Electrochim Acta 47(6):955–965

    Google Scholar 

  94. Anderson MA, Gorer S, Penner RM (1997) A hybrid electrochemical/chemical synthesis of supported, luminescent cadmium sulfide nanocrystals. J Phys Chem B 101(31):5895–5899

    Google Scholar 

  95. Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2004) Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology 15(12):1861–1865

    Google Scholar 

  96. Fujihara K, Kumar A, Jose R, Ramakrishna S, Uchida S (2007) Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell. Nanotechnology 18(36)

    Google Scholar 

  97. Archana PS, Jose R, Vijila C, Ramakrishna S (2009) Improved electron diffusion coefficient in electrospun TiO2 nanowires. J Phys Chem C 113(52):21538–21542

    Google Scholar 

  98. Ghadiri E, Taghavinia N, Zakeeruddin SM, Grätzel M, Moser JE (2010) Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers. Nano Lett 10(5):1632–1638

    Google Scholar 

  99. Joshi P, Zhang LF, Davoux D, Zhu ZT, Galipeau D, Fong H, Qiao QQ (2010) Composite of TiO2 nanofibers and nanoparticles for dye-sensitized solar cells with significantly improved efficiency. Energy Environ Sci 3(10):1507–1510

    Google Scholar 

  100. Martins A, Reis RL, Neves NM (2008) Electrospinning: processing technique for tissue engineering scaffolding. Int Mater Rev 53(5):257–274

    Google Scholar 

  101. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347

    Google Scholar 

  102. Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S (2007) Nanostructured ceramics by electrospinning. J Appl Phys 102(11)

    Google Scholar 

  103. Yang SY, Nair AS, Jose R, Ramakrishna S (2010) Electrospun TiO2 nanorods assembly sensitized by CdS quantum dots: a low-cost photovoltaic material. Energy Environ Sci 3(12):2010–2014

    Google Scholar 

  104. Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2005) New application of electrospun TiO2 solid-state dye-sensitized solar electrode to cells. Synth Met 153(1–3):77–80

    Google Scholar 

  105. Onozuka K, Ding B, Tsuge Y, Naka T, Yamazaki M, Sugi S, Ohno S, Yoshikawa M, Shiratori S (2006) Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications. Nanotechnology 17(4):1026–1031

    Google Scholar 

  106. Sudhagar P, Jung JH, Park S, Sathyamoorthy R, Ahn H, Kang YS (2009) Self-assembled CdS quantum dots-sensitized TiO2 nanospheroidal solar cells: Structural and charge transport analysis. Electrochim Acta 55(1):113–117

    Google Scholar 

  107. Samadpour M, Gimenez S, Zad AI, Taghavinia N, Mora-Sero I (2012) Easily manufactured TiO2 hollow fibers for quantum dot sensitized solar cells. Phys Chem Chem Phys 14(2):522–528

    Google Scholar 

  108. Han H, Sudhagar P, Song T, Jeon Y, Mora-Sero I, Fabregat-Santiago F, Bisquert J, Kang YS, Paik U (2013) Three dimensional-TiO2 nanotube array photoanode architectures assembled on a thin hollow nanofibrous backbone and their performance in quantum dot-sensitized solar cells. Chem Commun 49(27):2810–2812

    Google Scholar 

  109. Li ZD, Zhou Y, Bao CX, Xue GG, Zhang JY, Liu JG, Yu T, Zou ZG (2012) Vertically building Zn2SnO4 nanowire arrays on stainless steel mesh toward fabrication of large-area, flexible dye-sensitized solar cells. Nanoscale 4(11):3490–3494

    Google Scholar 

  110. Tao RH, Wu JM, Xue HX, Song XM, Pan X, Fang XQ, Fang XD, Dai SY (2010) A novel approach to titania nanowire arrays as photoanodes of back-illuminated dye-sensitized solar cells. J Power Sources 195(9):2989–2995

    Google Scholar 

  111. Law M, Greene LE, Johnson JC, Saykally R, Yang PD (2005) Nanowire dye-sensitized solar cells. Nat Mater 4(6):455–459

    Google Scholar 

  112. Xu CK, Wu JM, Desai UV, Gao D (2011) Multilayer assembly of nanowire arrays for dye-sensitized solar cells. J Am Chem Soc 133(21):8122–8125

    Google Scholar 

  113. Liu XL, Lin J, Chen XF (2013) Synthesis of long TiO2 nanotube arrays with a small diameter for efficient dye-sensitized solar cells. Rsc Adv 3(15):4885–4889

    Google Scholar 

  114. Lin J, Liu XL, Guo M, Lu W, Zhang GG, Zhou LM, Chen XF, Huang HT (2012) A facile route to fabricate an anodic TiO2 nanotube-nanoparticle hybrid structure for high efficiency dye-sensitized solar cells. Nanoscale 4(16):5148–5153

    Google Scholar 

  115. Kang TS, Smith AP, Taylor BE, Durstock MF (2009) Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett 9(2):601–606

    Google Scholar 

  116. Xie ZB, Adams S, Blackwood DJ, Wang J (2008) The effects of anodization parameters on titania nanotube arrays and dye sensitized solar cells. Nanotechnology 19(40)

    Google Scholar 

  117. Shankar K, Bandara J, Paulose M, Wietasch H, Varghese OK, Mor GK, LaTempa TJ, Thelakkat M, Grimes CA (2008) Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye. Nano Lett 8(6):1654–1659

    Google Scholar 

  118. Zhang QF, Cao GZ (2011) Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today 6(1):91–109

    Google Scholar 

  119. Xu F, Dai M, Lu YN, Sun LT (2010) Hierarchical ZnO nanowire-nanosheet architectures for high power conversion efficiency in dye-sensitized solar cells. J Phys Chem C 114(6):2776–2782

    Google Scholar 

  120. Ko SH, Lee D, Kang HW, Nam KH, Yeo JY, Hong SJ, Grigoropoulos CP, Sung HJ (2011) Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett 11(2):666–671

    Google Scholar 

  121. Cheng CW, Fan HJ (2012) Branched nanowires: synthesis and energy applications. Nano Today 7(4):327–343

    Google Scholar 

  122. Qiu JJ, Li XM, Gao XD, Gan XY, Weng BB, Li L, Yuan ZJ, Shi ZS, Hwang YH (2012) Branched double-shelled TiO2 nanotube networks on transparent conducting oxide substrates for dye sensitized solar cells. J Mater Chem 22(44):23411–23417

    Google Scholar 

  123. Chen HY, Kuang DB, Su CY (2012) Hierarchically micro/nanostructured photoanode materials for dye-sensitized solar cells. J Mater Chem 22(31):15475–15489

    Google Scholar 

  124. Dai H, Zhou Y, Liu Q, Li ZD, Bao CX, Yu T, Zhou ZG (2012) Controllable growth of dendritic ZnO nanowire arrays on a stainless steel mesh towards the fabrication of large area, flexible dye-sensitized solar cells. Nanoscale 4(17):5454–5460

    Google Scholar 

  125. Bierman MJ, Jin S (2009) Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ Sci 2(10):1050–1059

    Google Scholar 

  126. McCune M, Zhang W, Deng YL (2012) High efficiency dye-sensitized solar cells based on three-Dimensional multilayered ZnO nanowire arrays with “Caterpillarlike” structure. Nano Lett 12(7):3656–3662

    Google Scholar 

  127. Wu WQ, Lei BX, Rao HS, Xu YF, Wang YF, Su CY, Kuang DB (2013) Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells. Sci Rep 3

    Google Scholar 

  128. Sauvage F, Di Fonzo F, Bassi AL, Casari CS, Russo V, Divitini G, Ducati C, Bottani CE, Comte P, Graetzel M (2010) Hierarchical TiO2 photoanode for dye-sensitized solar cells. Nano Lett 10(7):2562–2567

    Google Scholar 

  129. Tétreault N, Heiniger L-P, Stefik M, Labouchère PL, Arsenault É, Nazeeruddin NK, Ozin GA, Grätzel M (2011) (Invited) Atomic layer deposition for novel dye-sensitized solar cells. ECS Trans 41(2):303–314

    Google Scholar 

  130. Xu CK, Wu JM, Desai UV, Gao D (2012) High-efficiency solid-state dye-sensitized solar cells based on TiO2-coated ZnO nanowire arrays. Nano Lett 12(5):2420–2424

    Google Scholar 

  131. Halaoui LI, Abrams NM, Mallouk TE (2005) Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals. J Phys Chem B 109(13):6334–6342

    Google Scholar 

  132. Guldin S, Hüttner S, Kolle M, Welland ME, Müller-Buschbaum P, Friend RH, Steiner U, Tétreault N (2010) Dye-sensitized solar cell based on a three-dimensional photonic crystal. Nano Lett 10(7):2303–2309

    Google Scholar 

  133. Liu LJ, Karuturi SK, Su LT, Tok AIY (2011) TiO2 inverse-opal electrode fabricated by atomic layer deposition for dye-sensitized solar cell applications. Energy Environ Sci 4(1):209–215

    Google Scholar 

  134. Choi JH, Kwon SH, Jeong YK, Kim I, Kim KH (2011) Atomic layer deposition of Ta-doped TiO2 electrodes for dye-sensitized solar cells. J Electrochem Soc 158(6):B749–B753

    Google Scholar 

  135. King JS, Graugnard E, Summers CJ (2005) TiO2 inverse opals fabricated using low-temperature atomic layer deposition. Adv Mater 17(8):1010-+

    Google Scholar 

  136. Chen JIL, von Freymann G, Choi SY, Kitaev V, Ozin GA (2008) Slow photons in the fast lane in chemistry. J Mater Chem 18(4):369–373

    Google Scholar 

  137. Yip C-H, Chiang Y-M, Wong C-C (2008) Dielectric band edge enhancement of energy conversion efficiency in photonic crystal dye-sensitized solar cell. J Phys Chem C 112(23):8735–8740

    Google Scholar 

  138. Shin JH, Kang JH, Jin WM, Park JH, Cho YS, Moon JH (2011) Facile synthesis of TiO2 inverse opal electrodes for dye-sensitized solar cells. Langmuir 27(2):856–860

    Google Scholar 

  139. Han SH, Lee S, Shin H, Jung HS (2011) A quasi-inverse opal layer based on highly crystalline TiO2 nanoparticles: a new light-scattering layer in dye-sensitized solar cells. Adv Energy Mater 1(4):546–550

    Google Scholar 

  140. Mihi A, Calvo ME, Anta JA, Miguez H (2008) Spectral response of opal-based dye-sensitized solar cells. J Phys Chem C 112(1):13–17

    Google Scholar 

  141. Nishimura S, Abrams N, Lewis BA, Halaoui LI, Mallouk TE, Benkstein KD, van de Lagemaat J, Frank AJ (2003) Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. J Am Chem Soc 125(20):6306–6310

    Google Scholar 

  142. Yuan S, Huang H, Wang Z, Zhao Y, Shi L, Cai C, Li D (2013) Improved electron-collection performance of dye sensitized solar cell based on three-dimensional conductive grid. J Photochem Photobiol A 259:10–16

    Google Scholar 

  143. Cho CY, Moon JH (2012) Hierarchical twin-scale inverse opal TiO2 electrodes for dye-sensitized solar cells. Langmuir 28(25):9372–9377

    Google Scholar 

  144. Kwak ES, Lee W, Park NG, Kim J, Lee H (2009) Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells. Adv Funct Mater 19(7):1093–1099

    Google Scholar 

  145. Toyoda T, Shen Q (2012) Quantum-dot-sensitized solar cells: effect of nanostructured TiO2 morphologies on photovoltaic properties. J Phys Chem Lett 3(14):1885–1893

    Google Scholar 

  146. Diguna LJ, Shen Q, Kobayashi J, Toyoda T (2007) High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl Phys Lett 91(2)

    Google Scholar 

  147. Shalom M, Dor S, Rühle S, Grinis L, Zaban A (2009) Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating. J Phys Chem C 113:3895–3898

    Google Scholar 

  148. Chakrapani V, Baker D, Kamat PV (2011) Understanding the role of the sulfide redox couple (S2− /S 2−n ) in quantum dot-sensitized solar cells. J Am Chem Soc 133:9607–9615

    Google Scholar 

  149. Gonzalez-Pedro V, Sima C, Marzari G, Boix PP, Gimenez S, Shen Q, Dittrich T, Mora-Sero I (2013) High performance PbS quantum dot sensitized solar cells exceeding 4 % efficiency: the role of metal precursors in the electron injection and charge separation. Phys Chem Chem Phys

    Google Scholar 

  150. Jovanovski V, González-Pedro V, Giménez S, Azaceta E, Cabañero G, Grande H, Tena-Zaera R, Mora-Seró I, Bisquert J (2011) A sulfide/polysulfide-based ionic liquid electrolyte for quantum dot-sensitized solar cells. J Am Chem Soc 133:20156–20159

    Google Scholar 

  151. Choné C, Larramona G (2007) French Patent 2899385, 05

    Google Scholar 

  152. Messina S, Nair MTS, Nair PK (2007) Antimony sulfide thin films in chemically deposited thin film photovoltaic cells. Thin Solid Films 515:5777–5782

    Google Scholar 

  153. Moon S-J, Itzhaik Y, Yum J-H, Zakeeruddin SM, Hodes G, Grätzel M (2010) Sb2S3-based mesoscopic solar cell using an organic hole conductor. J Phys Chem Lett 1:1524–1527

    Google Scholar 

  154. Im SH, Lim C-S, Chang JA, Lee YH, Maiti N, Kim H-J, Nazeeruddin MK, Grätzel M, Seok SI (2011) Toward interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells. Nano Lett 11:4789–4793

    Google Scholar 

  155. Hodes G, Manassen J, Cahen D (1980) Electrocatalytic electrodes for the polysulfide redox system. J Electrochem Soc 127:544–549

    Google Scholar 

  156. Yang YY, Zhu LF, Sun HC, Huang XM, Luo YH, Li DM, Meng QB (2012) Composite counter electrode based on nanoparticulate PbS and carbon black: towards quantum dot-sensitized solar cells with both high efficiency and stability. Acs Appl Mater Interfaces 4(11):6162–6168

    Google Scholar 

  157. Sudhagar P, Ramasamy E, Cho W-H, Lee J, Kang YS (2011) Robust mesocellular carbon foam counter electrode for quantum-dot sensitized solar cells. Electrochem Commun 13(1):34–37

    Google Scholar 

  158. Yang, Z.; Chen, C.-Y.; Liu, C.-W.; Li, C.-L.; Chang, H.-T., Quantum Dot–Sensitized Solar Cells Featuring CuS/CoS Electrodes Provide 4.1 % Efficiency. Advanced Energy Materials 2011, 1, 259-264

    Google Scholar 

  159. Deng M, Huang S, Zhang Q, Li D, Luo Y, Shen Q, Toyoda T, Meng Q (2010) Screen-printed Cu2S-based counter electrode for quantum-dot-sensitized solar cell. Chem Lett 39:1168–1170

    Google Scholar 

  160. Radich JG, Dwyer R, Kamat PV (2011) Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells. overcoming the redox limitations of S2 /- Sn -2 at the counter electrode. J Phys Chem Lett 2:2453–2460

    Google Scholar 

  161. Santra PK, Kamat PV (2012) Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5 %. J Am Chem Soc 134(5):2508–2511

    Google Scholar 

  162. Santra PK, Kamat PV (2012) Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5 %. J Am Chem Soc 134(5):2508–2511

    Google Scholar 

  163. Samadpour M, Boix PP, Giménez S, Iraji Zad A, Taghavinia N, Mora-Seró I, Bisquert J (2011) Fluorine treatment of TiO2 for enhancing quantum dot sensitized solar cell performance. J Phys Chem C 115:14400–14407

    Google Scholar 

  164. Barea EM, Shalom M, Giménez S, Hod I, Mora-Seró I, Zaban A, Bisquert J (2010) Design of injection and recombination in quantum dot sensitized solar cells. J Am Chem Soc 132:6834–6839

    Google Scholar 

  165. de la Fuente MS, Sánchez RS, González-Pedro V, Boix PP, Mhaisalkar SG, Rincón ME, Bisquert J, Mora-Seró I (2013) Effect of organic and inorganic passivation in quantum-dot-sensitized solar cells. J Phys Chem Lett 4(9):1519–1525

    Google Scholar 

  166. Mora-Sero I, Bisquert J (2010) Breakthroughs in the development of semiconductor-sensitized solar cells. J Phys Chem Lett 1(20):3046–3052

    Google Scholar 

  167. Kamat PV, Tvrdy K, Baker DR, Radich JG (2010) Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem Rev 110(11):6664–6688

    Google Scholar 

  168. Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin MK, Gratzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature (advance online publication)

    Google Scholar 

  169. Kagan CR, Mitzi DB, Dimitrakopoulos CD (1999) Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286:945–947

    Google Scholar 

  170. Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser JE, Gratzel M, Park N-G (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Natl Sci Rep 2(591):591

    Google Scholar 

  171. Baikie T, Fang Y, Kadro JM, Schreyer M, Wei F, Mhaisalkar SG, Graetzeld M, Whitec TJ (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A 1:5628–5641

    Google Scholar 

  172. Im J-H, Lee C-R, Lee J-W, Park S-W, Park N-G (2011) 6.5 % efficient perovskite quantum-dot-sensitized solar cell†. Nanoscale 3:4088–4093

    Google Scholar 

  173. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(2):6050–6051

    Google Scholar 

  174. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647

    Google Scholar 

  175. Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Gratzel M (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134:17396–17399

    Google Scholar 

  176. Heo JH, Im SH, Noh JH, Mandal TN, Lim C-S, Chang JA, Lee YH, Kim H-J, Sarkar A, Nazeeruddin MK, Gratzel M, Seok SI (2013) Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics 7:486–491

    Google Scholar 

  177. Kim H-S, Lee J-W, Yantara N, Boix PP, Kulkarni SA, Mhaisalkar S, Gratzel M, Park N-G (2013) High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett 16:2412–2417

    Google Scholar 

  178. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Chemical management for colorful, efficient, and stable inorganic- organic hybrid nanostructured solar cells. Nano Lett 7:1764–1769

    Google Scholar 

  179. Qiu J, Qiu Y, Yan K, Zhong M, Mu C, Yan H, Yang S (2013) All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale 5:3245–3248

    Google Scholar 

  180. Ball JM, Lee MM, Hey A, Snaith H (2013) Low-temperature processed mesosuperstructured to thin-film perovskite solar cells. Energy Environ Sci 6:1739–1743

    Google Scholar 

  181. Edri E, Kirmayer S, Cahen D, Hodes G (2013) High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskit. J Phys Chem 4:897–902

    Google Scholar 

  182. Kim H-S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez EJ, Park N-G, Bisquert J (2013) Mechanism of carrier accumulation in perovskite thin absorber solar cells. Nat Commun 4:2242

    Google Scholar 

  183. Sauvage F, Davoisne C, Philippe L, Elias J (2012) Structural and optical characterization of electrodeposited CdSe in mesoporous anatase TiO2 for regenerative quantum-dot-sensitized solar cells. Nanotechnology 23(39)

    Google Scholar 

  184. Bang JH, Kamat PV (2010) Solar cells by design: photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe. Adv Funct Mater 20(12):1970–1976

    Google Scholar 

  185. Boix PP, Lee YH, Fabregat-Santiago F, Im SH, Mora-Seró I, Bisquert J, Seok SI (2012) From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells. ACS Nano 6(1):873–880

    Google Scholar 

  186. An H, Ahn HJ (2013) Fabrication of wrinkled Nb-doped TiO2 nanofibres via electrospinning. Mater Lett 93:88–91

    Google Scholar 

  187. Herman I, Yeo J, Hong S, Lee D, Nam KH, Choi JH, Hong WH, Lee D, Grigoropoulos CP, Ko SH (2012) Hierarchical weeping willow nano-tree growth and effect of branching on dye-sensitized solar cell efficiency. Nanotechnology 23(19)

    Google Scholar 

  188. Fabregat-Santiago F, Garcia-Belmonte G, Mora-Seró I, Bisquert J (2011) Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys Chem Chem Phys 13:9083–9118

    Google Scholar 

  189. Boix PP, Larramona G, Jacob A, Delatouche B, Mora-Seró I, Bisquert J (2012) Hole transport and recombination in all-solid Sb2S3-sensitized TiO2 solar cells using CuSCN as hole transporter. J Phys Chem C 116(1):1579–1587

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván Mora-Seró .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Sudhagar, P., Juárez-Pérez, E.J., Kang, Y.S., Mora-Seró, I. (2014). Quantum Dot-Sensitized Solar Cells. In: Lin, Z., Wang, J. (eds) Low-cost Nanomaterials. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-6473-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6473-9_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6472-2

  • Online ISBN: 978-1-4471-6473-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics