Skip to main content

Genomics in Critical Illness

  • Chapter
  • First Online:
Book cover Pediatric Critical Care Medicine
  • 3449 Accesses

Abstract

The term “genomics” has morphed into an umbrella term to describe broadly the large-scale study of genes, gene products, gene variants, and their impact on health and disease. This chapter reviews the impact of genomics on critical illness and injury. The chapter will also review other “omics” such as proteomics, pharmacogenomics, epigenetics, lipidomics, and metabolomics. Gene association studies attempt to link gene variants with susceptibility to and outcomes from various forms of critical illness. Genome wide expression studies have been leveraged to elucidate novel therapeutic pathways and targets, gene expression-based subclasses of critical illness, and the discovery of candidate diagnostic and stratification biomarkers. Other “omics” disciplines are also leading to novel insights regarding the pathobiology of critical illness. For example, the discovery of neutrophil gelatinase-associated lipocalin as an early biomarker of acute kidney injury is based on trancriptomic and proteomic studies involving animals models. Comparative genomics has led to the discovery of important signaling mechanisms relevant to critical illness. For example, the discovery of Toll-like receptor 4 as the primary receptor for lipopolysaccharide is the product of comparative genomics. Finally, epigenetics is beginning to provide clues as to why recovery from critical illness may be associated for prolonged risk for subsequent critical illness. Overall, genomics-centered studies continue to evolve in the field of critical care medicine and hold the promise of substantially advancing our understanding and approach to various forms of critical illness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McKusick VA, Ruddle FH. Editorial: a new discipline, a new name, and new journal. Genomics. 1987;1:1–2.

    Google Scholar 

  2. Sorensen TI, Nielsen GG, Andersen PK, Teasdale TW. Genetic and environmental influences on premature death in adult adoptees. N Engl J Med. 1988;318(12):727–32.

    CAS  PubMed  Google Scholar 

  3. Manolio TA, Collins FS. The HapMap and genome-wide association studies in diagnosis and therapy. Annu Rev Med. 2009;60:443–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Yende S, Kammerer CM, Angus DC. Genetics and proteomics: deciphering gene association studies in critical illness. Crit Care. 2006;10(4):227.

    PubMed Central  PubMed  Google Scholar 

  5. Hobson MJ, Wong HR. Genetic association research: understanding its challenges and limitations. Pediatr Crit Care Med. 2010;11(6):762–3.

    PubMed  Google Scholar 

  6. Stalets E, Wong HR. Critically associating. Crit Care Med. 2009;37(4):1492–3.

    PubMed  Google Scholar 

  7. Freely associating. Nat Genet. 1999;22:1–2.

    Google Scholar 

  8. Cornell TT, Wynn J, Shanley TP, Wheeler DS, Wong HR. Mechanisms and regulation of the gene-expression response to sepsis. Pediatrics. 2010;125(6):1248–58.

    PubMed Central  PubMed  Google Scholar 

  9. Flores C, Pino-Yanes MM, Casula M, Villar J. Genetics of acute lung injury: past, present and future. Minerva Anestesiol. 2010;76(10):860–4.

    CAS  PubMed  Google Scholar 

  10. Gao L, Barnes KC. Recent advances in genetic predisposition to clinical acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2009;296(5):L713–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Namath A, Patterson AJ. Genetic polymorphisms in sepsis. Crit Care Clin. 2009;25(4):835–56, x.

    CAS  PubMed  Google Scholar 

  12. Sutherland AM, Walley KR. Bench-to-bedside review: association of genetic variation with sepsis. Crit Care. 2009;13(2):210.

    PubMed Central  PubMed  Google Scholar 

  13. Agnese DM, Calvano JE, Hahm SJ, Coyle SM, Corbett SA, Calvano SE, et al. Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis. 2002;186(10):1522–5.

    CAS  PubMed  Google Scholar 

  14. Allen A, Obaro S, Bojang K, Awomoyi AA, Greenwood BM, Whittle H, et al. Variation in toll-like receptor 4 and susceptibility to group A meningococcal meningitis in Gambian children. Pediatr Infect Dis J. 2003;22(11):1018–9.

    PubMed  Google Scholar 

  15. Balding J, Healy CM, Livingstone WJ, White B, Mynett-Johnson L, Cafferkey M, et al. Genomic polymorphic profiles in an Irish population with meningococcaemia: is it possible to predict severity and outcome of disease? Genes Immunol. 2003;4(8):533–40.

    CAS  Google Scholar 

  16. Endler G, Marculescu R, Starkl P, Binder A, Geishofer G, Muller M, et al. Polymorphisms in the interleukin-1 gene cluster in children and young adults with systemic meningococcemia. Clin Chem. 2006;52(3):511–4.

    CAS  PubMed  Google Scholar 

  17. Geishofer G, Binder A, Muller M, Zohrer B, Resch B, Muller W, et al. 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor-1 gene in children with systemic meningococcaemia. Eur J Pediatr. 2005;164(8):486–90.

    CAS  PubMed  Google Scholar 

  18. Haralambous E, Hibberd ML, Hermans PW, Ninis N, Nadel S, Levin M. Role of functional plasminogen-activator-inhibitor-1 4G/5G promoter polymorphism in susceptibility, severity, and outcome of meningococcal disease in Caucasian children. Crit Care Med. 2003;31(12):2788–93.

    CAS  PubMed  Google Scholar 

  19. Hermans PW, Hibberd ML, Booy R, Daramola O, Hazelzet JA, de Groot R, et al. 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor-1 gene and outcome of meningococcal disease. Meningococcal Research Group. Lancet. 1999;354(9178):556–60.

    CAS  PubMed  Google Scholar 

  20. Karoly E, Fekete A, Banki NF, Szebeni B, Vannay A, Szabo AJ, et al. Heat shock protein 72 (HSPA1B) gene polymorphism and toll-like receptor (TLR) 4 mutation are associated with increased risk of urinary tract infection in children. Pediatr Res. 2007;61(3):371–4.

    CAS  PubMed  Google Scholar 

  21. Kutukculer N, Yeniay BS, Aksu G, Berdeli A. Arg753Gln polymorphism of the human toll-like receptor-2 gene in children with recurrent febrile infections. Biochem Genet. 2007;45(7–8):507–14.

    CAS  PubMed  Google Scholar 

  22. Lorenz E, Mira JP, Frees KL, Schwartz DA. Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med. 2002;162(9):1028–32.

    CAS  PubMed  Google Scholar 

  23. McArthur JA, Zhang Q, Quasney MW. Association between the A/A genotype at the lymphotoxin-alpha + 250 site and increased mortality in children with positive blood cultures. Pediatr Crit Care Med. 2002;3(4):341–4.

    PubMed  Google Scholar 

  24. Michalek J, Svetlikova P, Fedora M, Klimovic M, Klapacova L, Bartosova D, et al. Interleukin-6 gene variants and the risk of sepsis development in children. Hum Immunol. 2007;68(9):756–60.

    CAS  PubMed  Google Scholar 

  25. Mira JP, Cariou A, Grall F, Delclaux C, Losser MR, Heshmati F, et al. Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA. 1999;282(6):561–8.

    CAS  PubMed  Google Scholar 

  26. Nadel S, Newport MJ, Booy R, Levin M. Variation in the tumor necrosis factor-alpha gene promoter region may be associated with death from meningococcal disease. J Infect Dis. 1996;174(4):878–80.

    CAS  PubMed  Google Scholar 

  27. Read RC, Cannings C, Naylor SC, Timms JM, Maheswaran R, Borrow R, et al. Variation within genes encoding interleukin-1 and the interleukin-1 receptor antagonist influence the severity of meningococcal disease. Ann Intern Med. 2003;138(7):534–41.

    CAS  PubMed  Google Scholar 

  28. Read RC, Pullin J, Gregory S, Borrow R, Kaczmarski EB, di Giovine FS, et al. A functional polymorphism of toll-like receptor 4 is not associated with likelihood or severity of meningococcal disease. J Infect Dis. 2001;184(5):640–2.

    CAS  PubMed  Google Scholar 

  29. Tabel Y, Berdeli A, Mir S. Association of TLR2 gene Arg753Gln polymorphism with urinary tract infection in children. Int J Immunogenet. 2007;34(6):399–405.

    CAS  PubMed  Google Scholar 

  30. Westendorp RG, Hottenga JJ, Slagboom PE. Variation in plasminogen-activator-inhibitor-1 gene and risk of meningococcal septic shock. Lancet. 1999;354(9178):561–3.

    CAS  PubMed  Google Scholar 

  31. Christie JD. Microarrays. Crit Care Med. 2005;33(12 Suppl):S449–52.

    PubMed  Google Scholar 

  32. Gershon D. Microarray technology: an array of opportunities. Nature. 2002;416(6883):885–91.

    PubMed  Google Scholar 

  33. Tang BM, Huang SJ, McLean AS. Genome-wide transcription profiling of human sepsis: a systematic review. Crit Care. 2010;14(6):R237.

    PubMed Central  PubMed  Google Scholar 

  34. Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12(2):87–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Boujoukos AJ, Martich GD, Supinski E, Suffredini AF. Compartmentalization of the acute cytokine response in humans after intravenous endotoxin administration. J Appl Physiol. 1993;74(6):3027–33.

    CAS  PubMed  Google Scholar 

  36. DeLa Cadena RA, Suffredini AF, Page JD, Pixley RA, Kaufman N, Parrillo JE, et al. Activation of the kallikrein-kinin system after endotoxin administration to normal human volunteers. Blood. 1993;81(12):3313–7.

    CAS  PubMed  Google Scholar 

  37. Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs JA, Wesley RA, et al. The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med. 1989;321(5):280–7.

    CAS  PubMed  Google Scholar 

  38. Suffredini AF, Harpel PC, Parrillo JE. Promotion and subsequent inhibition of plasminogen activation after administration of intravenous endotoxin to normal subjects. N Engl J Med. 1989;320(18):1165–72.

    CAS  PubMed  Google Scholar 

  39. Talwar S, Munson PJ, Barb J, Fiuza C, Cintron AP, Logun C, et al. Gene expression profiles of peripheral blood leukocytes after endotoxin challenge in humans. Physiol Genomics. 2006;25(2):203–15.

    PubMed  Google Scholar 

  40. Prabhakar U, Conway TM, Murdock P, Mooney JL, Clark S, Hedge P, et al. Correlation of protein and gene expression profiles of inflammatory proteins after endotoxin challenge in human subjects. DNA Cell Biol. 2005;24(7):410–31.

    CAS  PubMed  Google Scholar 

  41. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, et al. A network-based analysis of systemic inflammation in humans. Nature. 2005;437(7061):1032–7.

    CAS  PubMed  Google Scholar 

  42. Cvijanovich N, Shanley TP, Lin R, Allen GL, Thomas NJ, Checchia P, et al. Validating the genomic signature of pediatric septic shock. Physiol Genomics. 2008;34(1):127–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Johnson SB, Lissauer M, Bochicchio GV, Moore R, Cross AS, Scalea TM. Gene expression profiles differentiate between sterile SIRS and early sepsis. Ann Surg. 2007;245(4):611–21.

    PubMed Central  PubMed  Google Scholar 

  44. Pachot A, Lepape A, Vey S, Bienvenu J, Mougin B, Monneret G. Systemic transcriptional analysis in survivor and non-survivor septic shock patients: a preliminary study. Immunol Lett. 2006;106(1):63–71.

    CAS  PubMed  Google Scholar 

  45. Payen D, Lukaszewicz AC, Belikova I, Faivre V, Gelin C, Russwurm S, et al. Gene profiling in human blood leucocytes during recovery from septic shock. Intensive Care Med. 2008;34(8):1371–6.

    CAS  PubMed  Google Scholar 

  46. Prucha M, Ruryk A, Boriss H, Moller E, Zazula R, Herold I, et al. Expression profiling: toward an application in sepsis diagnostics. Shock. 2004;22(1):29–33.

    CAS  PubMed  Google Scholar 

  47. Shanley TP, Cvijanovich N, Lin R, Allen GL, Thomas NJ, Doctor A, et al. Genome-level longitudinal expression of signaling pathways and gene networks in pediatric septic shock. Mol Med. 2007;13(9–10):495–508.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Tang BM, McLean AS, Dawes IW, Huang SJ, Cowley MJ, Lin RC. Gene-expression profiling of gram-positive and gram-negative sepsis in critically ill patients. Crit Care Med. 2008;36(4):1125–8.

    CAS  PubMed  Google Scholar 

  49. Tang BM, McLean AS, Dawes IW, Huang SJ, Lin RC. The use of gene-expression profiling to identify candidate genes in human sepsis. Am J Respir Crit Care Med. 2007;176(7):676–84.

    CAS  PubMed  Google Scholar 

  50. Tang BM, McLean AS, Dawes IW, Huang SJ, Lin RC. Gene-expression profiling of peripheral blood mononuclear cells in sepsis. Crit Care Med. 2009;37(3):882–8.

    CAS  PubMed  Google Scholar 

  51. Wong HR, Cvijanovich N, Allen GL, Lin R, Anas N, Meyer K, et al. Genomic expression profiling across the pediatric systemic inflammatory response syndrome, sepsis, and septic shock spectrum. Crit Care Med. 2009;37(5):1558–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Wong HR, Freishtat RJ, Monaco M, Odoms K, Shanley TP. Leukocyte subset-derived genomewide expression profiles in pediatric septic shock. Pediatr Crit Care Med. 2010;11(3):349–55.

    PubMed Central  PubMed  Google Scholar 

  53. Wong HR, Shanley TP, Sakthivel B, Cvijanovich N, Lin R, Allen GL, et al. Genome-level expression profiles in pediatric septic shock indicate a role for altered zinc homeostasis in poor outcome. Physiol Genomics. 2007;30(2):146–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Carlet J, Cohen J, Calandra T, Opal SM, Masur H. Sepsis: time to reconsider the concept. Crit Care Med. 2008;36(3):964–6.

    PubMed  Google Scholar 

  55. Marshall JC. Such stuff as dreams are made on: mediator-directed therapy in sepsis. Nat Rev Drug Discov. 2003;2(5):391–405.

    CAS  PubMed  Google Scholar 

  56. Marshall JC, Vincent JL, Fink MP, Cook DJ, Rubenfeld G, Foster D, et al. Measures, markers, and mediators: toward a staging system for clinical sepsis. A report of the Fifth Toronto Sepsis Roundtable, Toronto, Ontario, Canada, October 25–26, 2000. Crit Care Med. 2003;31(5):1560–7.

    PubMed  Google Scholar 

  57. Russell JA. Gene expression in human sepsis: what have we learned? Crit Care. 2011;15(1):121.

    PubMed Central  PubMed  Google Scholar 

  58. Gogos CA, Drosou E, Bassaris HP, Skoutelis A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J Infect Dis. 2000;181(1):176–80.

    CAS  PubMed  Google Scholar 

  59. Osuchowski MF, Welch K, Siddiqui J, Remick DG. Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. J Immunol. 2006;177(3):1967–74.

    CAS  PubMed  Google Scholar 

  60. Osuchowski MF, Welch K, Yang H, Siddiqui J, Remick DG. Chronic sepsis mortality characterized by an individualized inflammatory response. J Immunol. 2007;179(1):623–30.

    CAS  PubMed  Google Scholar 

  61. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348(2):138–50.

    CAS  PubMed  Google Scholar 

  62. Hotchkiss RS, Opal S. Immunotherapy for sepsis – a new approach against an ancient foe. N Engl J Med. 2010;363(1):87–9.

    CAS  PubMed  Google Scholar 

  63. Unsinger J, McGlynn M, Kasten KR, Hoekzema AS, Watanabe E, Muenzer JT, et al. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J Immunol. 2010;184(7):3768–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Kasten KR, Prakash PS, Unsinger J, Goetzman HS, England LG, Cave CM, et al. Interleukin-7 (IL-7) treatment accelerates neutrophil recruitment through gamma delta T-cell IL-17 production in a murine model of sepsis. Infect Immun. 2010;78(11):4714–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Wong HR, Cvijanovich N, Lin R, Allen GL, Thomas NJ, Willson DF, et al. Identification of pediatric septic shock subclasses based on genome-wide expression profiling. BMC Med. 2009;7:34.

    PubMed Central  PubMed  Google Scholar 

  66. Wong HR, Cvijanovich NZ, Allen GL, Thomas NJ, Freishtat RJ, Anas N, et al. Validation of a gene expression-based subclassification strategy for pediatric septic shock. Crit Care Med. 2011;39:2511–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Wong HR, Wheeler DS, Tegtmeyer K, Poynter SE, Kaplan JM, Chima RS, et al. Toward a clinically feasible gene expression-based subclassification strategy for septic shock: proof of concept. Crit Care Med. 2010;38(10):1955–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Wynn JL, Cvijanovich NZ, Allen GL, Thomas NJ, Freishtat RJ, Anas N, et al. The influence of developmental age on the early transcriptomic response of children with septic shock. Mol Med. 2011;17(11–12):1146–56.

    Google Scholar 

  69. Bouchon A, Facchetti F, Weigand MA, Colonna M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature. 2001;410(6832):1103–7.

    CAS  PubMed  Google Scholar 

  70. Pathan N, Hemingway CA, Alizadeh AA, Stephens AC, Boldrick JC, Oragui EE, et al. Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet. 2004;363(9404):203–9.

    CAS  PubMed  Google Scholar 

  71. Pachot A, Cazalis MA, Venet F, Turrel F, Faudot C, Voirin N, et al. Decreased expression of the fractalkine receptor CX3CR1 on circulating monocytes as new feature of sepsis-induced immunosuppression. J Immunol. 2008;180(9):6421–9.

    CAS  PubMed  Google Scholar 

  72. Rink L, Haase H. Zinc homeostasis and immunity. Trends Immunol. 2007;28(1):1–4.

    CAS  PubMed  Google Scholar 

  73. Cvijanovich NZ, King JC, Flori HR, Gildengorin G, Wong HR. Zinc homeostasis in pediatric critical illness. Pediatr Crit Care Med. 2009;10(1):29–34.

    PubMed  Google Scholar 

  74. Heyland DK, Jones N, Cvijanovich NZ, Wong H. Zinc supplementation in critically ill patients: a key pharmaconutrient? JPEN J Parenter Enter Nutr. 2008;32(5):509–19.

    CAS  Google Scholar 

  75. Weitzel LR, Mayles WJ, Sandoval PA, Wischmeyer PE. Effects of pharmaconutrients on cellular dysfunction and the microcirculation in critical illness. Curr Opin Anaesthesiol. 2009;22(2):177–83.

    PubMed  Google Scholar 

  76. Bao S, Liu MJ, Lee B, Besecker B, Lai JP, Guttridge DC, et al. Zinc modulates the innate immune response in vivo to polymicrobial sepsis through regulation of NF-kappaB. Am J Physiol Lung Cell Mol Physiol. 2010;298(6):L744–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Knoell DL, Julian MW, Bao S, Besecker B, Macre JE, Leikauf GD, et al. Zinc deficiency increases organ damage and mortality in a murine model of polymicrobial sepsis. Crit Care Med. 2009;37(4):1380–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Besecker BY, Exline MC, Hollyfield J, Phillips G, Disilvestro RA, Wewers MD, et al. A comparison of zinc metabolism, inflammation, and disease severity in critically ill infected and noninfected adults early after intensive care unit admission. Am J Clin Nutr. 2011;93(6):1356–64.

    PubMed Central  PubMed  Google Scholar 

  79. Knoell DL, Liu MJ. Impact of zinc metabolism on innate immune function in the setting of sepsis. Int J Vitam Nutr Res. 2010;80(4–5):271–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Solan PD, Dunsmore KE, Denenberg AG, Odom K, Zingarelli B, Wong HR. A novel role for matrix metalloproteinase-8 in sepsis. Crit Care Med. 2012;40:379–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Van Lint P, Libert C. Matrix metalloproteinase-8: cleavage can be decisive. Cytokine Growth Factor Rev. 2006;17(4):217–23.

    PubMed  Google Scholar 

  82. Vanlaere I, Libert C. Matrix metalloproteinases as drug targets in infections caused by gram-negative bacteria and in septic shock. Clin Microbiol Rev. 2009;22(2):224–39, Table of Contents.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Kaplan JM, Wong HR. Biomarker discovery and development in pediatric critical care medicine. Pediatr Crit Care Med. 2011;12(2):165–73.

    PubMed Central  PubMed  Google Scholar 

  84. Lissauer ME, Johnson SB, Bochicchio GV, Feild CJ, Cross AS, Hasday JD, et al. Differential expression of toll-like receptor genes: sepsis compared with sterile inflammation 1 day before sepsis diagnosis. Shock. 2009;31(3):238–44.

    CAS  PubMed  Google Scholar 

  85. Cobb JP, Moore EE, Hayden DL, Minei JP, Cuschieri J, Yang J, et al. Validation of the riboleukogram to detect ventilator-associated pneumonia after severe injury. Ann Surg. 2009;250(4):531–9.

    PubMed Central  PubMed  Google Scholar 

  86. McDunn JE, Husain KD, Polpitiya AD, Burykin A, Ruan J, Li Q, et al. Plasticity of the systemic inflammatory response to acute infection during critical illness: development of the riboleukogram. PLoS One. 2008;3(2):e1564.

    PubMed Central  PubMed  Google Scholar 

  87. Ramilo O, Allman W, Chung W, Mejias A, Ardura M, Glaser C, et al. Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood. 2007;109(5):2066–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Nowak JE, Wheeler DS, Harmon KK, Wong HR. Admission chemokine (C-C motif) ligand 4 levels predict survival in pediatric septic shock. Pediatr Crit Care Med. 2010;11(2):213–6.

    PubMed Central  PubMed  Google Scholar 

  89. Wong HR, Cvijanovich N, Wheeler DS, Bigham MT, Monaco M, Odoms K, et al. Interleukin-8 as a stratification tool for interventional trials involving pediatric septic shock. Am J Respir Crit Care Med. 2008;178(3):276–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Calfee CS, Thompson BT, Parsons PE, Ware LB, Matthay MA, Wong HR. Plasma interleukin-8 is not an effective risk stratification tool for adults with vasopressor-dependent septic shock. Crit Care Med. 2010;38(6):1436–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Standage SW, Wong HR. Biomarkers for pediatric sepsis and septic shock. Expert Rev Anti Infect Ther. 2011;9(1):71–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Pene F, Courtine E, Cariou A, Mira JP. Toward theragnostics. Crit Care Med. 2009;37(1 Suppl):S50–8.

    CAS  PubMed  Google Scholar 

  93. Kotz KT, Xiao W, Miller-Graziano C, Qian WJ, Russom A, Warner EA, et al. Clinical microfluidics for neutrophil genomics and proteomics. Nat Med. 2010;16(9):1042–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol. 2008;26(3):317–25.

    CAS  PubMed  Google Scholar 

  95. Karvunidis T, Mares J, Thongboonkerd V, Matejovic M. Recent progress of proteomics in critical illness. Shock. 2009;31(6):545–52.

    CAS  PubMed  Google Scholar 

  96. Nguyen A, Yaffe MB. Proteomics and systems biology approaches to signal transduction in sepsis. Crit Care Med. 2003;31(1 Suppl):S1–6.

    CAS  PubMed  Google Scholar 

  97. Qian WJ, Petritis BO, Kaushal A, Finnerty CC, Jeschke MG, Monroe ME, et al. Plasma proteome response to severe burn injury revealed by 18O-labeled “universal” reference-based quantitative proteomics. J Proteome Res. 2010;9(9):4779–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Liu T, Qian WJ, Gritsenko MA, Xiao W, Moldawer LL, Kaushal A, et al. High dynamic range characterization of the trauma patient plasma proteome. Mol Cell Proteomics. 2006;5(10):1899–913.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol. 2006;24(8):971–83.

    CAS  PubMed  Google Scholar 

  100. Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;54(6):1012–24.

    CAS  PubMed  Google Scholar 

  101. Devarajan P. Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of kidney disease. Scand J Clin Lab Invest Suppl. 2008;241:89–94.

    PubMed Central  PubMed  Google Scholar 

  102. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–8.

    CAS  PubMed  Google Scholar 

  103. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14(10):2534–43.

    CAS  PubMed  Google Scholar 

  104. Devarajan P. Proteomics for biomarker discovery in acute kidney injury. Semin Nephrol. 2007;27(6):637–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Casanova JL, Abel L, Quintana-Murci L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol. 2011;29:447–91.

    CAS  PubMed  Google Scholar 

  106. Kalil AC, Larosa SP, Gogate J, Lynn M, Opal SM. Influence of severity of illness on the effects of eritoran tetrasodium (E5564) and on other therapies for severe sepsis. Shock. 2011;36(4):327–31.

    Google Scholar 

  107. Tidswell M, LaRosa SP. Toll-like receptor-4 antagonist eritoran tetrasodium for severe sepsis. Expert Rev Anti Infect Ther. 2011;9(5):507–20.

    CAS  PubMed  Google Scholar 

  108. Beutler B, Poltorak A. The sole gateway to endotoxin response: how LPS was identified as Tlr4, and its role in innate immunity. Drug Metab Dispos. 2001;29(4 Pt 2):474–8.

    CAS  PubMed  Google Scholar 

  109. Zhang X, Chen Y, Jenkins LW, Kochanek PM, Clark RS. Bench-to-bedside review: apoptosis/programmed cell death triggered by traumatic brain injury. Crit Care. 2005;9(1):66–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Hotchkiss RS, Coopersmith CM, Karl IE. Prevention of lymphocyte apoptosis – a potential treatment of sepsis? Clin Infect Dis. 2005;41 Suppl 7:S465–9.

    CAS  PubMed  Google Scholar 

  111. Tang PS, Mura M, Seth R, Liu M. Acute lung injury and cell death: how many ways can cells die? Am J Physiol Lung Cell Mol Physiol. 2008;294(4):L632–41.

    CAS  PubMed  Google Scholar 

  112. Zakeri Z, Lockshin RA. Cell death: history and future. Adv Exp Med Biol. 2008;615:1–11.

    PubMed  Google Scholar 

  113. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Delcuve GP, Rastegar M, Davie JR. Epigenetic control. J Cell Physiol. 2009;219(2):243–50.

    CAS  PubMed  Google Scholar 

  115. Carson WF, Cavassani KA, Dou Y, Kunkel SL. Epigenetic regulation of immune cell functions during post-septic immunosuppression. Epigenetics. 2011;6(3):273–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Chan C, Li L, McCall CE, Yoza BK. Endotoxin tolerance disrupts chromatin remodeling and NF-kappaB transactivation at the IL-1beta promoter. J Immunol. 2005;175(1):461–8.

    CAS  PubMed  Google Scholar 

  117. El Gazzar M, Yoza BK, Chen X, Garcia BA, Young NL, McCall CE. Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance. Mol Cell Biol. 2009;29(7):1959–71.

    CAS  PubMed  Google Scholar 

  118. El Gazzar M, Yoza BK, Chen X, Hu J, Hawkins GA, McCall CE. G9a and HP1 couple histone and DNA methylation to TNFalpha transcription silencing during endotoxin tolerance. J Biol Chem. 2008;283(47):32198–208.

    PubMed Central  PubMed  Google Scholar 

  119. Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature. 2007;447(7147):972–8.

    CAS  PubMed  Google Scholar 

  120. Brogdon JL, Xu Y, Szabo SJ, An S, Buxton F, Cohen D, et al. Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function. Blood. 2007;109(3):1123–30.

    CAS  PubMed  Google Scholar 

  121. Tsaprouni LG, Ito K, Adcock IM, Punchard N. Suppression of lipopolysaccharide- and tumour necrosis factor-alpha-induced interleukin (IL)-8 expression by glucocorticoids involves changes in IL-8 promoter acetylation. Clin Exp Immunol. 2007;150(1):151–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, et al. Suppression of inflammation by a synthetic histone mimic. Nature. 2010;468(7327):1119–23.

    CAS  PubMed  Google Scholar 

  123. Czaja AS, Zimmerman JJ, Nathens AB. Readmission and late mortality after pediatric severe sepsis. Pediatrics. 2009;123(3):849–57.

    PubMed  Google Scholar 

  124. Quartin AA, Schein RM, Kett DH, Peduzzi PN. Magnitude and duration of the effect of sepsis on survival. Department of Veterans Affairs Systemic Sepsis Cooperative Studies Group. JAMA. 1997;277(13):1058–63.

    CAS  PubMed  Google Scholar 

  125. Winters BD, Eberlein M, Leung J, Needham DM, Pronovost PJ, Sevransky JE. Long-term mortality and quality of life in sepsis: a systematic review. Crit Care Med. 2010;38(5):1276–83.

    PubMed  Google Scholar 

  126. Ishii M, Wen H, Corsa CA, Liu T, Coelho AL, Allen RM, et al. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood. 2009;114(15):3244–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Wen H, Dou Y, Hogaboam CM, Kunkel SL. Epigenetic regulation of dendritic cell-derived interleukin-12 facilitates immunosuppression after a severe innate immune response. Blood. 2008;111(4):1797–804.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Wen H, Schaller MA, Dou Y, Hogaboam CM, Kunkel SL. Dendritic cells at the interface of innate and acquired immunity: the role for epigenetic changes. J Leukoc Biol. 2008;83(3):439–46.

    CAS  PubMed  Google Scholar 

  129. Ma Q, Lu AY. Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev. 2011;63(2):437–59.

    CAS  PubMed  Google Scholar 

  130. Empey PE. Genetic predisposition to adverse drug reactions in the intensive care unit. Crit Care Med. 2010;38(6 Suppl):S106–16.

    CAS  PubMed  Google Scholar 

  131. Relling MV, Hoffman JM. Should pharmacogenomic studies be required for new drug approval? Clin Pharmacol Ther. 2007;81(3):425–8.

    CAS  PubMed  Google Scholar 

  132. Yu KS, Cho JY, Jang IJ, Hong KS, Chung JY, Kim JR, et al. Effect of the CYP3A5 genotype on the pharmacokinetics of intravenous midazolam during inhibited and induced metabolic states. Clin Pharmacol Ther. 2004;76(2):104–12.

    CAS  PubMed  Google Scholar 

  133. Johnson JA, Liggett SB. Cardiovascular pharmacogenomics of adrenergic receptor signaling: clinical implications and future directions. Clin Pharmacol Ther. 2011;89(3):366–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Chung LP, Waterer G, Thompson PJ. Pharmacogenetics of beta2 adrenergic receptor gene polymorphisms, long-acting beta-agonists and asthma. Clin Exp Allergy. 2011;41(3):312–26.

    CAS  PubMed  Google Scholar 

  135. Serkova NJ, Standiford TJ, Stringer KA. The emerging field of quantitative blood metabolomics for biomarker discovery in critical illnesses. Am J Respir Crit Care Med. 2011;184(6):647–55.

    Google Scholar 

  136. Wolf C, Quinn PJ. Lipidomics: practical aspects and applications. Prog Lipid Res. 2008;47(1):15–36.

    CAS  PubMed  Google Scholar 

  137. Overall CM, Dean RA. Degradomics: systems biology of the protease web. Pleiotropic roles of MMPs in cancer. Cancer Metastasis Rev. 2006;25(1):69–75.

    PubMed  Google Scholar 

  138. Namas R, Zamora R, An G, Doyle J, Dick TE, Jacono FJ, et al. Sepsis: something old, something new, and a systems view. J Crit Care. 2011;27(3):314.e1–11.

    Google Scholar 

  139. Vodovotz Y, Constantine G, Faeder J, Mi Q, Rubin J, Bartels J, et al. Translational systems approaches to the biology of inflammation and healing. Immunopharmacol Immunotoxicol. 2010;32(2):181–95.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector R. Wong MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Wong, H.R. (2014). Genomics in Critical Illness. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6362-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6362-6_20

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6361-9

  • Online ISBN: 978-1-4471-6362-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics