Skip to main content

Blood Conservation in the Perioperative Setting

  • Chapter
  • First Online:
Book cover Pediatric Critical Care Medicine
  • 1959 Accesses

Abstract

Children undergoing high blood loss surgical procedures face the same risks associated with transfusion as adults but must live with the sequelae of transfusion-related complications throughout a much longer life span. Avoidance of allogeneic blood transfusion can be accomplished with a team approach that relies on a thorough understanding of patient- and procedure-associated risk factors for bleeding, allowing patients who might benefit from a perioperative blood conservation strategy to be identified. The individual components of a multidisciplinary, multimodal blood conservation plan are discussed in this chapter. These elements include preoperative erythropoietin therapy, perioperative autologous blood collection (preoperative autologous donation, intraoperative hemodilution and cell salvage), antifibrinolytics, deliberate hypotension, and blood sparing surgical techniques. The adoption of lower transfusion triggers, institutional transfusion algorithms, and reduced blood sampling can result in fewer transfusions for all pediatric surgical patients.

Keywords

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glance LG, Dick AW, Mukamel DB, et al. Association between intraoperative blood transfusion and mortality and morbidity in patients undergoing noncardiac surgery. Anesthesiology. 2011;114(2):283–92.

    PubMed  Google Scholar 

  2. Lavoie J. Blood transfusion risks and alternative strategies in pediatric patients. Paediatr Anaesth. 2011;21(1):14–24.

    PubMed  Google Scholar 

  3. Vamvakas EC, Blajchman MA. Transfusion-related mortality: the ongoing risks of allogeneic blood transfusion and the available strategies for their prevention. Blood. 2009;113(15):3406–17.

    PubMed  CAS  Google Scholar 

  4. Silliman CC, McLaughlin NJ. Transfusion-related acute lung injury. Blood Rev. 2006;20(3):139–59.

    PubMed  CAS  Google Scholar 

  5. Vamvakas EC, Blajchman MA. Transfusion-related immunomodulation (TRIM): an update. Blood Rev. 2007;21(6):327–48.

    PubMed  Google Scholar 

  6. Church GD, Price C, Sanchez R, Looney MR. Transfusion-related acute lung injury in the paediatric patient: two case reports and a review of the literature. Transfus Med. 2006;16(5):343–8.

    PubMed  CAS  Google Scholar 

  7. Atzil S, Arad M, Glasner A, et al. Blood transfusion promotes cancer progression: a critical role for aged erythrocytes. Anesthesiology. 2008;109(6):989–97.

    PubMed Central  PubMed  Google Scholar 

  8. Koch CG, Li L, Sessler DI, et al. Duration of red-cell storage and complications after cardiac surgery. N Engl J Med. 2008;358(12):1229–39.

    PubMed  CAS  Google Scholar 

  9. Barshtein G, Manny N, Yedgar S. Circulatory risk in the transfusion of red blood cells with impaired flow properties induced by storage. Transfus Med Rev. 2011;25(1):24–35.

    PubMed  Google Scholar 

  10. Tsai AG, Cabrales P, Intaglietta M. Microvascular perfusion upon exchange transfusion with stored red blood cells in normovolemic anemic conditions. Transfusion. 2004;44(11):1626–34.

    PubMed  Google Scholar 

  11. Reynolds JD, Ahearn GS, Angelo M, Zhang J, Cobb F, Stamler JS. S-nitrosohemoglobin deficiency: a mechanism for loss of physiological activity in banked blood. Proc Natl Acad Sci U S A. 2007;104(43):17058–62.

    PubMed Central  PubMed  CAS  Google Scholar 

  12. Kiraly LN, Underwood S, Differding JA, Schreiber MA. Transfusion of aged packed red blood cells results in decreased tissue oxygenation in critically injured trauma patients. J Trauma. 2009;67(1):29–32.

    PubMed  Google Scholar 

  13. Gauvin F, Spinella PC, Lacroix J, et al. Association between length of storage of transfused red blood cells and multiple organ dysfunction syndrome in pediatric intensive care patients. Transfusion. 2010;50(9):1902–13.

    PubMed  Google Scholar 

  14. Edgren G, Kamper-Jorgensen M, Eloranta S, et al. Duration of red blood cell storage and survival of transfused patients (CME). Transfusion. 2010;50(6):1185–95.

    PubMed Central  PubMed  Google Scholar 

  15. Stainsby D, Jones H, Wells AW, Gibson B, Cohen H. Adverse outcomes of blood transfusion in children: analysis of UK reports to the serious hazards of transfusion scheme 1996–2005. Br J Haematol. 2008;141(1):73–9.

    PubMed  CAS  Google Scholar 

  16. Stokes ME, Ye X, Shah M, et al. Impact of bleeding-related complications and/or blood product transfusions on hospital costs in inpatient surgical patients. BMC Health Serv Res. 2011;11:135.

    PubMed Central  PubMed  Google Scholar 

  17. Goodman AM, Pollack MM, Patel KM, Luban NL. Pediatric red blood cell transfusions increase resource use. J Pediatr. 2003;142(2):123–7.

    PubMed  Google Scholar 

  18. Zou S, Musavi F, Notari EP, Fang CT. Changing age distribution of the blood donor population in the United States. Transfusion. 2008;48(2):251–7.

    PubMed  Google Scholar 

  19. Bhananker SM, Ramamoorthy C, Geiduschek JM, et al. Anesthesia-related cardiac arrest in children: update from the Pediatric Perioperative Cardiac Arrest Registry. Anesth Analg. 2007;105(2):344–50.

    PubMed  Google Scholar 

  20. Flick RP, Sprung J, Harrison TE, et al. Perioperative cardiac arrests in children between 1988 and 2005 at a tertiary referral center: a study of 92,881 patients. Anesthesiology. 2007;106(2):226–37, quiz 413–4.

    PubMed  Google Scholar 

  21. Hassan NE. Blood management in pediatric spinal deformity surgery: review of a 2-year experience. Transfusion. 2011;10:2133–41.

    Google Scholar 

  22. Brohi K, Cohen MJ, Ganter MT, et al. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma. 2008;64(5):1211–7; discussion 1217.

    PubMed  Google Scholar 

  23. Cotton BA, Gunter OL, Isbell J, et al. Damage control hematology: the impact of a trauma exsanguination protocol on survival and blood product utilization. J Trauma. 2008;64(5):1177–82; discussion 1182–3.

    PubMed  Google Scholar 

  24. Strauss RG. Transfusion therapy in neonates. Am J Dis Child. 1991;145(8):904–11.

    PubMed  CAS  Google Scholar 

  25. Keung CY, Smith KR, Savoia HF, Davidson AJ. An audit of transfusion of red blood cell units in pediatric anesthesia. Paediatr Anaesth. 2009;19(4):320–8.

    PubMed  Google Scholar 

  26. Guzzetta NA, Miller BE. Principles of hemostasis in children: models and maturation. Paediatr Anaesth. 2011;21(1):3–9.

    PubMed  Google Scholar 

  27. Spinella PC, Dressler A, Tucci M, et al. Survey of transfusion policies at US and Canadian children’s hospitals in 2008 and 2009. Transfusion. 2010;50(11):2328–35.

    PubMed  Google Scholar 

  28. Bird S, McGill N. Blood conservation and pain control in scoliosis corrective surgery: an online survey of UK practice. Paediatr Anaesth. 2011;21(1):50–3.

    PubMed  Google Scholar 

  29. Jouffroy R, Baugnon T, Carli P, Orliaguet G. A survey of blood transfusion practice in French-speaking pediatric anesthesiologists. Paediatr Anaesth. 2011;21(4):385–93.

    PubMed  Google Scholar 

  30. Practice guidelines for perioperative blood transfusion and adjuvant therapies: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies. Anesthesiology. 2006;105(1):198–208.

    Google Scholar 

  31. Ferraris VA, Brown JR, Despotis GJ, et al. 2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg. 2011;91(3):944–82.

    PubMed  Google Scholar 

  32. Carson JL, Hill S, Carless P, Hebert P, Henry D. Transfusion triggers: a systematic review of the literature. Transfus Med Rev. 2002;16(3):187–99.

    PubMed  Google Scholar 

  33. Hill SR, Carless PA, Henry DA, et al. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Syst Rev. 2002;2:CD002042.

    PubMed  Google Scholar 

  34. Hebert PC, Wells G, Blajchman MA, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340(6):409–17.

    PubMed  CAS  Google Scholar 

  35. Lacroix J, Hebert PC, Hutchison JS, et al. Transfusion strategies for patients in pediatric intensive care units. N Engl J Med. 2007;356(16):1609–19.

    PubMed  CAS  Google Scholar 

  36. Willems A, Harrington K, Lacroix J, et al. Comparison of two red-cell transfusion strategies after pediatric cardiac surgery: a subgroup analysis. Crit Care Med. 2010;38(2):649–56.

    PubMed  Google Scholar 

  37. Rouette J, Trottier H, Ducruet T, Beaunoyer M, Lacroix J, Tucci M. Red blood cell transfusion threshold in postsurgical pediatric intensive care patients: a randomized clinical trial. Ann Surg. 2010;251(3):421–7.

    PubMed  Google Scholar 

  38. Bell EF, Strauss RG, Widness JA, et al. Randomized trial of liberal versus restrictive guidelines for red blood cell transfusion in preterm infants. Pediatrics. 2005;115(6):1685–91.

    PubMed Central  PubMed  Google Scholar 

  39. Kirpalani H, Whyte RK, Andersen C, et al. The Premature Infants in Need of Transfusion (PINT) study: a randomized, controlled trial of a restrictive (low) versus liberal (high) transfusion threshold for extremely low birth weight infants. J Pediatr. 2006;149(3):301–7.

    PubMed  Google Scholar 

  40. Mallett SV, Peachey TD, Sanehi O, Hazlehurst G, Mehta A. Reducing red blood cell transfusion in elective surgical patients: the role of audit and practice guidelines. Anaesthesia. 2000;55(10):1013–9.

    PubMed  CAS  Google Scholar 

  41. Ansari S, Szallasi A. Blood management by transfusion triggers: when less is more. Blood Transfus. 2011;4(1):1–6.

    Google Scholar 

  42. Stricker PA, Cladis FP, Fiadjoe JE, McCloskey JJ, Maxwell LG. Perioperative management of children undergoing craniofacial reconstruction surgery: a practice survey. Paediatr Anaesth. 2011;10:1026–35.

    Google Scholar 

  43. Baer VL, Henry E, Lambert DK, et al. Implementing a program to improve compliance with neonatal intensive care unit transfusion guidelines was accompanied by a reduction in transfusion rate: a pre-post analysis within a multihospital health care system. Transfusion. 2011;51(2):264–9.

    PubMed  Google Scholar 

  44. Faberowski LW, Black S, Mickle JP. Blood loss and transfusion practice in the perioperative management of craniosynostosis repair. J Neurosurg Anesthesiol. 1999;11(3):167–72.

    PubMed  CAS  Google Scholar 

  45. Stricker PA, Shaw TL, Desouza DG, et al. Blood loss, replacement, and associated morbidity in infants and children undergoing craniofacial surgery. Paediatr Anaesth. 2010;20(2):150–9.

    PubMed  Google Scholar 

  46. Di Rocco C, Tamburrini G, Pietrini D. Blood sparing in craniosynostosis surgery. Semin Pediatr Neurol. 2004;11(4):278–87.

    PubMed  Google Scholar 

  47. Barone CM, Jimenez DF. Endoscopic craniectomy for early correction of craniosynostosis. Plast Reconstr Surg. 1999;104(7):1965–73; discussion 1974–5.

    PubMed  CAS  Google Scholar 

  48. Lauritzen C, Sugawara Y, Kocabalkan O, Olsson R. Spring mediated dynamic craniofacial reshaping. Case report. Scand J Plast Reconstr Surg Hand Surg. 1998;32(3):331–8.

    PubMed  CAS  Google Scholar 

  49. Jimenez DF, Barone CM, Cartwright CC, Baker L. Early management of craniosynostosis using endoscopic-assisted strip craniectomies and cranial orthotic molding therapy. Pediatrics. 2002;110(1 Pt 1):97–104.

    PubMed  Google Scholar 

  50. Meier PM, Goobie SM, DiNardo JA, Proctor MR, Zurakowski D, Soriano SG. Endoscopic strip craniectomy in early infancy: the initial five years of anesthesia experience. Anesth Analg. 2011;112(2):407–14.

    PubMed  Google Scholar 

  51. Shah MN, Kane AA, Petersen JD, Woo AS, Naidoo SD, Smyth MD. Endoscopically assisted versus open repair of sagittal craniosynostosis: the St. Louis Children’s Hospital experience. J Neurosurg Pediatr. 2011;8(2):165–70.

    PubMed  Google Scholar 

  52. Guimaraes-Ferreira J, Gewalli F, David L, Olsson R, Friede H, Lauritzen CG. Spring-mediated cranioplasty compared with the modified pi-plasty for sagittal synostosis. Scand J Plast Reconstr Surg Hand Surg. 2003;37(4):208–15.

    PubMed  Google Scholar 

  53. Ririe DG, David LR, Glazier SS, Smith TE, Argenta LC. Surgical advancement influences perioperative care: a comparison of two surgical techniques for sagittal craniosynostosis repair. Anesth Analg. 2003;97(3):699–703.

    PubMed  Google Scholar 

  54. Ririe DG, Smith TE, Wood BC, et al. Time-dependent perioperative anesthetic management and outcomes of the first 100 consecutive cases of spring-assisted surgery for sagittal craniosynostosis. Paediatr Anaesth. 2011;21:1015–9.

    Google Scholar 

  55. Levy JH, Dutton RP, Hemphill 3rd JC, et al. Multidisciplinary approach to the challenge of hemostasis. Anesth Analg. 2010;110(2):354–64.

    PubMed  Google Scholar 

  56. Fergusson DA, Hebert PC, Mazer CD, et al. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med. 2008;358(22):2319–31.

    PubMed  CAS  Google Scholar 

  57. Tzortzopoulou A, Cepeda MS, Schumann R, Carr DB. Antifibrinolytic agents for reducing blood loss in scoliosis surgery in children. Cochrane Database Syst Rev. 2008;3:CD006883.

    PubMed  Google Scholar 

  58. Schouten ES, van de Pol AC, Schouten AN, Turner NM, Jansen NJ, Bollen CW. The effect of aprotinin, tranexamic acid, and aminocaproic acid on blood loss and use of blood products in major pediatric surgery: a meta-analysis. Pediatr Crit Care Med. 2009;10(2):182–90.

    PubMed  Google Scholar 

  59. Eaton MP. Antifibrinolytic therapy in surgery for congenital heart disease. Anesth Analg. 2008;106(4):1087–100.

    PubMed  CAS  Google Scholar 

  60. Henry DA, Carless PA, Moxey AJ, et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2011;3:CD001886.

    PubMed  Google Scholar 

  61. Breuer T, Martin K, Wilhelm M, et al. The blood sparing effect and the safety of aprotinin compared to tranexamic acid in paediatric cardiac surgery. Eur J Cardiothorac Surg. 2009;35(1):167–71; author reply 171.

    PubMed  Google Scholar 

  62. Martin K, Breuer T, Gertler R, et al. Tranexamic acid versus varepsilon-aminocaproic acid: efficacy and safety in paediatric cardiac surgery. Eur J Cardiothorac Surg. 2011;39(6):892–7.

    PubMed  Google Scholar 

  63. Martin K, Gertler R, Sterner A, et al. Comparison of blood-sparing efficacy of epsilon-aminocaproic acid and tranexamic acid in newborns undergoing cardiac surgery. Thorac Cardiovasc Surg. 2011;59(5):276–80.

    PubMed  CAS  Google Scholar 

  64. Martin KGR, Liermann H, Mayr NP, Macguill M, Schreiber C, Vogt M, Tassani P, Wiesner G. Switch from aprotinin to {varepsilon}-aminocaproic acid: impact on blood loss, transfusion, and clinical outcome in neonates undergoing cardiac surgery. Br J Anaesth. 2011;107(6):934–9.

    PubMed  CAS  Google Scholar 

  65. Shakur H, Roberts I, Bautista R, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.

    PubMed  CAS  Google Scholar 

  66. Dadure C, Sauter M, Bringuier S, et al. Intraoperative tranexamic acid reduces blood transfusion in children undergoing craniosynostosis surgery: a randomized double-blind study. Anesthesiology. 2011;114(4):856–61.

    PubMed  CAS  Google Scholar 

  67. Goobie SM, Meier PM, Pereira LM, et al. Efficacy of tranexamic acid in pediatric craniosynostosis surgery: a double-blind, placebo-controlled trial. Anesthesiology. 2011;114(4):862–71.

    PubMed  CAS  Google Scholar 

  68. Martin K, Knorr J, Breuer T, et al. Seizures after open heart surgery: comparison of epsilon-aminocaproic acid and tranexamic acid. J Cardiothorac Vasc Anesth. 2011;25(1):20–5.

    PubMed  CAS  Google Scholar 

  69. Keyl C, Uhl R, Beyersdorf F, et al. High-dose tranexamic acid is related to increased risk of generalized seizures after aortic valve replacement. Eur J Cardiothorac Surg. 2011;39(5):e114–21.

    PubMed  Google Scholar 

  70. Lauder GR. Pre-operative predeposit autologous donation in children presenting for elective surgery: a review. Transfus Med. 2007;17(2):75–82.

    PubMed  CAS  Google Scholar 

  71. Forgie MA, Wells PS, Laupacis A, Fergusson D. Preoperative autologous donation decreases allogeneic transfusion but increases exposure to all red blood cell transfusion: results of a meta-analysis. International Study of Perioperative Transfusion (ISPOT) Investigators. Arch Intern Med. 1998;158(6):610–6.

    PubMed  CAS  Google Scholar 

  72. Henry DA, Carless PA, Moxey AJ, et al. Pre-operative autologous donation for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2002;2:CD003602.

    PubMed  Google Scholar 

  73. Carless P, Moxey A, O’Connell D, Henry D. Autologous transfusion techniques: a systematic review of their efficacy. Transfus Med. 2004;14(2):123–44.

    PubMed  CAS  Google Scholar 

  74. Rock G, Berger R, Bormanis J, et al. A review of nearly two decades in an autologous blood programme: the rise and fall of activity. Transfus Med. 2006;16(5):307–11.

    PubMed  CAS  Google Scholar 

  75. Schved JF. Preoperative autologous blood donation: a therapy that needs to be scientifically evaluated. Transfus Clin Biol. 2005;12(5):365–9.

    PubMed  Google Scholar 

  76. Singbartl G. Pre-operative autologous blood donation: clinical parameters and efficacy. Blood Transfus. 2011;9(1):10–8.

    PubMed Central  PubMed  Google Scholar 

  77. Murto KT, Splinter WM. Perioperative autologous blood donation in children. Transfus Sci. 1999;21(1):41–62.

    PubMed  CAS  Google Scholar 

  78. Moran MM, Kroon D, Tredwell SJ, Wadsworth LD. The role of autologous blood transfusion in adolescents undergoing spinal surgery. Spine (Phila Pa 1976). 1995;20(5):532–6.

    CAS  Google Scholar 

  79. Letts M, Perng R, Luke B, Jarvis J, Lawton L, Hoey S. An analysis of a preoperative pediatric autologous blood donation program. Can J Surg. 2000;43(2):125–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  80. Lo KS, Chow BF, Chan HT, Gunawardene S, Luk KD. An autologous blood donation program for paediatric scoliosis patients in Hong Kong. Anaesth Intensive Care. 2002;30(6):775–81.

    PubMed  CAS  Google Scholar 

  81. Fukahara K, Murakami A, Ueda T, et al. Scheduled autologous blood donation at the time of cardiac catheterization in infants and children. J Thorac Cardiovasc Surg. 1997;114(3):504–5.

    PubMed  CAS  Google Scholar 

  82. Masuda H, Moriyama Y, Hisatomi K, et al. Preoperative autologous donation of blood for a simple cardiac anomaly: analysis of children weighing under twenty kilograms. J Thorac Cardiovasc Surg. 2000;120(4):783–9.

    PubMed  CAS  Google Scholar 

  83. Hibino N, Nagashima M, Sato H, Hori T, Ishitoya H, Tomino T. Preoperative autologous blood donation for cardiac surgery in children. Asian Cardiovasc Thorac Ann. 2008;16(1):21–4.

    PubMed  Google Scholar 

  84. Velardi F, Di Chirico A, Di Rocco C, et al. “No allogeneic blood transfusion” protocol for the surgical correction of craniosynostoses – II. Clinical application. Child Nerv Syst. 1998;14(12):732–9.

    CAS  Google Scholar 

  85. Ashworth A, Klein AA. Cell salvage as part of a blood conservation strategy in anaesthesia. Br J Anaesth. 2010;105(4):401–16.

    PubMed  CAS  Google Scholar 

  86. Carless PA, Henry DA, Moxey AJ, O’Connell D, Brown T, Fergusson DA. Cell salvage for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2010;4:CD001888.

    PubMed  Google Scholar 

  87. Simpson MB, Georgopoulos G, Eilert RE. Intraoperative blood salvage in children and young adults undergoing spinal surgery with predeposited autologous blood: efficacy and cost effectiveness. J Pediatr Orthop. 1993;13(6):777–80.

    PubMed  CAS  Google Scholar 

  88. Jimenez DF, Barone CM. Intraoperative autologous blood transfusion in the surgical correction of craniosynostosis. Neurosurgery. 1995;37(6):1075–9.

    PubMed  CAS  Google Scholar 

  89. Dahmani S, Orliaguet GA, Meyer PG, Blanot S, Renier D, Carli PA. Perioperative blood salvage during surgical correction of craniosynostosis in infants. Br J Anaesth. 2000;85(4):550–5.

    PubMed  CAS  Google Scholar 

  90. Fearon JA. Reducing allogenic blood transfusions during pediatric cranial vault surgical procedures: a prospective analysis of blood recycling. Plast Reconstr Surg. 2004;113(4):1126–30.

    PubMed  Google Scholar 

  91. Golab HD, Scohy TV, de Jong PL, Takkenberg JJ, Bogers AJ. Intraoperative cell salvage in infants undergoing elective cardiac surgery: a prospective trial. Eur J Cardiothorac Surg. 2008;34(2):354–9.

    PubMed  Google Scholar 

  92. Nicolai P, Leggetter PP, Glithero PR, Bhimarasetty CR. Autologous transfusion in acetabuloplasty in children. J Bone Joint Surg Br. 2004;86(1):110–2.

    PubMed  CAS  Google Scholar 

  93. Munoz M, Garcia-Vallejo JJ, Ruiz MD, Romero R, Olalla E, Sebastian C. Transfusion of post-operative shed blood: laboratory characteristics and clinical utility. Eur Spine J. 2004;13 Suppl 1:S107–13.

    PubMed Central  PubMed  Google Scholar 

  94. Liumbruno GM, Waters JH. Unwashed shed blood: should we transfuse it? Blood Transfus. 2011;9(3):241–5.

    PubMed Central  PubMed  Google Scholar 

  95. Blevins FT, Shaw B, Valeri CR, Kasser J, Hall J. Reinfusion of shed blood after orthopaedic procedures in children and adolescents. J Bone Joint Surg Am. 1993;75(3):363–71.

    PubMed  CAS  Google Scholar 

  96. Orliaguet GA, Bruyere M, Meyer PG, Blanot S, Renier D, Carli PA. Comparison of perioperative blood salvage and postoperative reinfusion of drained blood during surgical correction of craniosynostosis in infants. Paediatr Anaesth. 2003;13(9):797–804.

    PubMed  Google Scholar 

  97. Paul JE, Ling E, Lalonde C, Thabane L. Deliberate hypotension in orthopedic surgery reduces blood loss and transfusion requirements: a meta-analysis of randomized controlled trials. Can J Anaesth. 2007;54(10):799–810.

    PubMed  Google Scholar 

  98. Choi WS, Samman N. Risks and benefits of deliberate hypotension in anaesthesia: a systematic review. Int J Oral Maxillofac Surg. 2008;37(8):687–703.

    PubMed  CAS  Google Scholar 

  99. Precious DS, Splinter W, Bosco D. Induced hypotensive anesthesia for adolescent orthognathic surgery patients. J Oral Maxillofac Surg. 1996;54(6):680–3; discussion 683–4.

    PubMed  CAS  Google Scholar 

  100. Diaz JH, Lockhart CH. Hypotensive anesthesia for craniectomy in infancy. Brit J Anaesth. 1979;51(3):233–5.

    PubMed  CAS  Google Scholar 

  101. Schaller Jr RT, Schaller J, Furman EB. The advantages of hemodilution anesthesia for major liver resection in children. J Pediatr Surg. 1984;19(6):705–10.

    PubMed  Google Scholar 

  102. Schaller Jr RT, Schaller J, Morgan A, Furman EB. Hemodilution anesthesia: a valuable aid to major cancer surgery in children. Am J Surg. 1983;146(1):79–84.

    PubMed  Google Scholar 

  103. Han SH, Bahk JH, Kim JH, et al. The effect of esmolol-induced controlled hypotension in combination with acute normovolemic hemodilution on cerebral oxygenation. Acta Anaesthesiol Scand. 2006;50(7):863–8.

    PubMed  CAS  Google Scholar 

  104. Monk TG. Acute normovolemic hemodilution. Anesthesiol Clin N Am. 2005;23(2):271–81, vi.

    Google Scholar 

  105. Bryson GL, Laupacis A, Wells GA. Does acute normovolemic hemodilution reduce perioperative allogeneic transfusion? A meta-analysis. The International Study of Perioperative Transfusion. Anesth Analg. 1998;86(1):9–15.

    PubMed  CAS  Google Scholar 

  106. Segal JB, Blasco-Colmenares E, Norris EJ, Guallar E. Preoperative acute normovolemic hemodilution: a meta-analysis. Transfusion. 2004;44(5):632–44.

    PubMed  Google Scholar 

  107. Fontana JL, Welborn L, Mongan PD, Sturm P, Martin G, Bunger R. Oxygen consumption and cardiovascular function in children during profound intraoperative normovolemic hemodilution. Anesth Analg. 1995;80(2):219–25.

    PubMed  CAS  Google Scholar 

  108. Hassan AA, Lochbuehler H, Frey L, Messmer K. Global tissue oxygenation during normovolaemic haemodilution in young children. Paediatr Anaesth. 1997;7(3):197–204.

    Google Scholar 

  109. Desa VP, Bekassy AN, Schou H, Werner MU, Werner O. Hemodilution during bone-marrow harvesting in children. Anesth Analg. 1991;72(5):645–50.

    Google Scholar 

  110. Hans P, Collin V, Bonhomme V, Damas F, Born JD, Lamy M. Evaluation of acute normovolemic hemodilution for surgical repair of craniosynostosis. J Neurosurg Anesthesiol. 2000;12(1):33–6.

    PubMed  CAS  Google Scholar 

  111. Du Toit G, Relton JE, Gillespie R. Acute haemodilutional autotransfusion in the surgical management of scoliosis. J Bone Joint Surg Br. 1978;60-B(2):178–80.

    PubMed  Google Scholar 

  112. Olsfanger D, Jedeikin R, Metser U, Nusbacher J, Gepstein R. Acute normovolaemic haemodilution and idiopathic scoliosis surgery: effects on homologous blood requirements. Anaesth Intensive Care. 1993;21(4):429–31.

    PubMed  CAS  Google Scholar 

  113. Vaniterson M, Vanderwaart FJM, Erdmann W, Trouwborst A. Systemic hemodynamics and oxygenation during hemodilution in children. Lancet. 1995;346(8983):1127–9.

    CAS  Google Scholar 

  114. Han SH, Kim CS, Kim SD, Bahk JH, Park YS. The effect of bloodless pump prime on cerebral oxygenation in paediatric patients. Acta Anaesthesiol Scand. 2004;48(5):648–52.

    PubMed  CAS  Google Scholar 

  115. Singbartl K, Schleinzer W, Singbartl G. Hypervolemic hemodilution: an alternative to acute normovolemic hemodilution? A mathematical analysis. J Surg Res. 1999;86(2):206–12.

    PubMed  CAS  Google Scholar 

  116. Mielke LL, Entholzner EK, Kling M, et al. Preoperative acute hypervolemic hemodilution with hydroxyethylstarch: an alternative to acute normovolemic hemodilution? Anesth Analg. 1997;84(1):26–30.

    PubMed  CAS  Google Scholar 

  117. Kumar R, Chakraborty I, Sehgal R. A prospective randomized study comparing two techniques of perioperative blood conservation: isovolemic hemodilution and hypervolemic hemodilution. Anesth Analg. 2002;95(5):1154–61, table of contents.

    PubMed  CAS  Google Scholar 

  118. Chen YQ, Chen Y, Ji CS, Gu HB, Bai J. Clinical observation of acute hypervolemic hemodilution in scoliosis surgery on children. Zhonghua Yi Xue Za Zhi. 2008;88(41):2901–3.

    PubMed  CAS  Google Scholar 

  119. Goodnough LT, Rudnick S, Price TH, et al. Increased preoperative collection of autologous blood with recombinant human erythropoietin therapy. N Engl J Med. 1989;321(17):1163–8.

    PubMed  CAS  Google Scholar 

  120. Goodnough LT, Monk TG, Andriole GL. Erythropoietin therapy. N Engl J Med. 1997;336(13):933–8.

    PubMed  CAS  Google Scholar 

  121. Schiff SJ, Weinstein SL. Use of recombinant human erythropoietin to avoid blood transfusion in a Jehovah’s Witness requiring hemispherectomy. Case report. J Neurosurg. 1993;79(4):600–2.

    PubMed  CAS  Google Scholar 

  122. Helfaer MA, Carson BS, James CS, Gates J, Della-Lana D, Vander Kolk C. Increased hematocrit and decreased transfusion requirements in children given erythropoietin before undergoing craniofacial surgery. J Neurosurg. 1998;88(4):704–8.

    PubMed  CAS  Google Scholar 

  123. Vitale MG, Stazzone EJ, Gelijns AC, Moskowitz AJ, Roye Jr DP. The effectiveness of preoperative erythropoietin in averting allogenic blood transfusion among children undergoing scoliosis surgery. J Pediatr Orthop B. 1998;7(3):203–9.

    PubMed  CAS  Google Scholar 

  124. Sonzogni V, Crupi G, Poma R, et al. Erythropoietin therapy and preoperative autologous blood donation in children undergoing open heart surgery. Br J Anaesth. 2001;87(3):429–34.

    PubMed  CAS  Google Scholar 

  125. Komai H, Naito Y, Okamura Y, Fujiwara K, Suzuki H, Uemura S. Preliminary study of autologous blood predonation in pediatric open-heart surgery impact of advance infusion of recombinant human erythropoietin. Pediatr Cardiol. 2005;26(1):50–5.

    PubMed  CAS  Google Scholar 

  126. Franchini M, Gandini G, Regis D, De Gironcoli M, Cantini M, Aprili G. Recombinant human erythropoietin facilitates autologous blood collections in children undergoing corrective spinal surgery. Transfusion. 2004;44(7):1122–4.

    PubMed  Google Scholar 

  127. Krajewski K, Ashley RK, Pung N, et al. Successful blood conservation during craniosynostotic correction with dual therapy using procrit and cell saver. J Craniofac Surg. 2008;19(1):101–5.

    PubMed  Google Scholar 

  128. Polley JW, Berkowitz RA, McDonald TB, Cohen M, Figueroa A, Penney DW. Craniomaxillofacial surgery in the Jehovah’s Witness patient. Plast Reconstr Surg. 1994;93(6):1258–63.

    PubMed  CAS  Google Scholar 

  129. Meneghini L, Zadra N, Aneloni V, Metrangolo S, Faggin R, Giusti F. Erythropoietin therapy and acute preoperative normovolaemic haemodilution in infants undergoing craniosynostosis surgery. Paediatr Anaesth. 2003;13(5):392–6.

    PubMed  Google Scholar 

  130. Henling CE, Carmichael MJ, Keats AS, Cooley DA. Cardiac operation for congenital heart disease in children of Jehovah’s Witnesses. J Thorac Cardiovasc Surg. 1985;89(6):914–20.

    PubMed  CAS  Google Scholar 

  131. Ott DA, Cooley DA. Cardiovascular surgery in Jehovah’s Witnesses. Report of 542 operations without blood transfusion. JAMA. 1977;238(12):1256–8.

    PubMed  CAS  Google Scholar 

  132. Rosengart TK, Helm RE, DeBois WJ, Garcia N, Krieger KH, Isom OW. Open heart operations without transfusion using a multimodality blood conservation strategy in 50 Jehovah’s witness patients: Implications for a “bloodless” surgical technique. J Am Coll Surgeons. 1997;184(6):618–29.

    CAS  Google Scholar 

  133. Neff TA, Stocker R, Wight E, Spahn DR. Extreme intraoperative blood loss and hemodilution in a Jehovah’s Witness: new aspects in postoperative management. Anesthesiology. 1999;91(6):1949–51.

    PubMed  CAS  Google Scholar 

  134. Joseph Jr SA, Berekashvili K, Mariller MM, et al. Blood conservation techniques in spinal deformity surgery: a retrospective review of patients refusing blood transfusion. Spine (Phila Pa 1976). 2008;33(21):2310–5.

    Google Scholar 

  135. Lisander B, Jonsson R, Nordwall A. Combination of blood-saving methods decreases homologous blood requirements in scoliosis surgery. Anaesth Intensive Care. 1996;24(5):555–8.

    PubMed  CAS  Google Scholar 

  136. Bateman ST, Lacroix J, Boven K, et al. Anemia, blood loss, and blood transfusions in North American children in the intensive care unit. Am J Respir Crit Care Med. 2008;178(1):26–33.

    PubMed  Google Scholar 

  137. Munoz M, Garcia-Erce JA, Villar I, Thomas D. Blood conservation strategies in major orthopaedic surgery: efficacy, safety and European regulations. Vox Sang. 2009;96(1):1–13.

    PubMed  CAS  Google Scholar 

  138. Tse EY, Cheung WY, Ng KF, Luk KD. Reducing perioperative blood loss and allogeneic blood transfusion in patients undergoing major spine surgery. J Bone Joint Surg Am. 2011;93(13):1268–77.

    PubMed  Google Scholar 

  139. Hassan NE, Winters J, Winterhalter K, Reischman D, El-Borai Y. Effects of blood conservation on the incidence of anemia and transfusions in pediatric parapneumonic effusion: a hospitalist perspective. J Hosp Med. 2010;5(7):410–3.

    PubMed  Google Scholar 

  140. Velardi F, Di Chirico A, Di Rocco C, et al. “No allogeneic blood transfusion” protocol for the surgical correction of craniosynostoses – I. Rationale. Child Nerv Syst. 1998;14(12):722–31.

    CAS  Google Scholar 

  141. Rohling RG, Haers PE, Zimmermann AP, Schanz U, Marquetand R, Sailer HF. Multimodal strategy for reduction of homologous transfusions in craniomaxillofacial surgery. Int J Oral Max Surg. 1999;28(2):137–42.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Craig Weldon MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Weldon, B.C. (2014). Blood Conservation in the Perioperative Setting. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6359-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6359-6_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6358-9

  • Online ISBN: 978-1-4471-6359-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics