Skip to main content

In Vitro Cell Culture Model of Calcification: Molecular Regulation of Myofibroblast Differentiation to an Osteoblast Phenotype

  • Chapter
  • First Online:
Molecular Biology of Valvular Heart Disease

Abstract

The presence of calcification in the aortic valve is responsible for important prognostic information for the natural history of this disease [1, 2]. Although calcification in aortic valves has been described in the literature for over 100 years, little is known about the synthesis of bone matrix proteins in the aortic valve. Studies evaluating aortic valve calcification have focused on the expression of osteopontin (OP) expression in the mineralization zones of heavily calcified aortic valves obtained at autopsy and surgery [3, 4]. Furthermore, studies in cardiovascular calcification demonstrate parallel histologic findings in the valve and the vasculature in regards to the cellular abnormalities involved in the calcification [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajamannan NM, Evans FJ, Aikawa E, Grande-Allen KJ, Demer LL, Heistad DD, Simmons CA, Masters KS, Mathieu P, O’Brien KD, Schoen FJ, Towler DA, Yoganathan AP, Otto CM. Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Circulation. 2011;124(16):1783–91.

    Google Scholar 

  2. Rosenhek R, Binder T, Porenta G, Lang I, Christ G, Schemper M, Maurer G, Baumgartner H. Predictors of outcome in severe, asymptomatic aortic stenosis. N Engl J Med. 2000;343:611–7.

    Article  CAS  PubMed  Google Scholar 

  3. O'Brien KD, Kuusisto J, Reichenbach DD, Ferguson M, Giachelli C, Alpers CE, Otto CM. Osteopontin is expressed in human aortic valvular lesions. Circulation. 1995;92:2163–8 [comment].

    Article  PubMed  Google Scholar 

  4. Mohler 3rd ER, Adam LP, McClelland P, Graham L, Hathaway DR. Detection of osteopontin in calcified human aortic valves. Arterioscler Thromb Vasc Biol. 1997;17:547–52.

    Article  PubMed  Google Scholar 

  5. Vattikuti R, Towler DA. Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab. 2004;286:E686–96.

    Article  CAS  PubMed  Google Scholar 

  6. Parhami F, Basseri B, Hwang J, Tintut Y, Demer LL. High-density lipoprotein regulates calcification of vascular cells. Circ Res. 2002;91:570–6.

    Article  CAS  PubMed  Google Scholar 

  7. Mohler 3rd ER, Chawla MK, Chang AW, Vyavahare N, Levy RJ, Graham L, Gannon FH. Identification and characterization of calcifying valve cells from human and canine aortic valves. J Heart Valve Dis. 1999;8:254–60.

    PubMed  Google Scholar 

  8. Rajamannan NM. Calcific aortic valve disease: cellular origins of valve calcification. Arterioscler Thromb Vasc Biol. 2011;31:2777–8.

    Article  CAS  PubMed  Google Scholar 

  9. Rajamannan NM. Role of oxidative stress in calcific aortic valve disease: from bench to bedside. In: Morales-Gonzalez J.A.Oxidative Stress and Chronic Degenerative Diseases – A Role for Antioxidants, ] InTech Publisher, 2013; Chapter 11, pp. 265–87.

    Google Scholar 

  10. Rajamannan NM, Subramaniam M, Caira F, Stock SR, Spelsberg TC. Atorvastatin inhibits hypercholesterolemia-induced calcification in the aortic valves via the lrp5 receptor pathway. Circulation. 2005;112:I229–34.

    PubMed Central  PubMed  Google Scholar 

  11. Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan J, Springett M, Orszulak T, Fullerton DA, Tajik AJ, Bonow RO, Spelsberg T. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation. 2003;107:2181–4.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Rajamannan NM, Subramaniam M, Springett M, Sebo TC, Niekrasz M, McConnell JP, Singh RJ, Stone NJ, Bonow RO, Spelsberg TC. Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation. 2002;105:2260–5.

    Article  Google Scholar 

  13. Tintut Y, Alfonso Z, Saini T, Radcliff K, Watson K, Bostrom K, Demer LL. Multilineage potential of cells from the artery wall. Circulation. 2003;108:2505–10.

    Article  PubMed  Google Scholar 

  14. Rawadi G, Vayssiere B, Dunn F, Baron R, Roman-Roman S. Bmp-2 controls alkaline phosphatase expression and osteoblast mineralization by a wnt autocrine loop. J Bone Miner Res. 2003;18:1842–53.

    Article  CAS  PubMed  Google Scholar 

  15. Mohler 3rd ER, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS. Bone formation and inflammation in cardiac valves. Circulation. 2001;103:1522–8.

    Article  PubMed  Google Scholar 

  16. Bonner F, Farach-Carson MC. Bone formation. New York: Springer; Topics in Bone Biology. 2003. Vol 1. p. 1–15.

    Google Scholar 

  17. Bostrom K, Tintut Y, Kao SC, Stanford WP, Demer LL. Hoxb7 overexpression promotes differentiation of c3h10t1/2 cells to smooth muscle cells. J Cell Biochem. 2000;78:210–21.

    Article  CAS  PubMed  Google Scholar 

  18. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747–54 [see comment].

    Article  CAS  PubMed  Google Scholar 

  19. Ducy P, Schinke T, Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillance. Science. 2000;289:1501–4.

    Article  CAS  PubMed  Google Scholar 

  20. Waters KM, Rickard DJ, Riggs BL, Khosla S, Katzenellenbogen JA, Katzenellenbogen BS, Moore J, Spelsberg TC. Estrogen regulation of human osteoblast function is determined by the stage of differentiation and the estrogen receptor isoform. J Cell Biochem. 2001;83:448–62.

    Article  CAS  PubMed  Google Scholar 

  21. Aubin JE, Liu F, Malaval L, Gupta AK. Osteoblast and chondroblast differentiation. Bone. 1995;17:77S–83.

    Article  CAS  PubMed  Google Scholar 

  22. Young MF, Kerr JM, Ibaraki K, Heegaard AM, Robey PG. Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin Orthop Relat Res. 1992;281:275–94.

    Google Scholar 

  23. Speer MY, McKee MD, Guldberg RE, Liaw L, Yang HY, Tung E, Karsenty G, Giachelli CM. Inactivation of the osteopontin gene enhances vascular calcification of matrix gla protein-deficient mice: evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo. J Exp Med. 2002;196:1047–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Steitz SA, Speer MY, McKee MD, Liaw L, Almeida M, Yang H, Giachelli CM. Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am J Pathol. 2002;161:2035–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Caira FC, Stock SR, Gleason TG, McGee EC, Huang J, Bonow RO, Spelsberg TC, McCarthy PM, Rahimtoola SH, Rajamannan NM. Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J Am Coll Cardiol. 2006;47:1707–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Jian B, Jones PL, Li Q, Mohler 3rd ER, Schoen FJ, Levy RJ. Matrix metalloproteinase-2 is associated with tenascin-c in calcific aortic stenosis. Am J Pathol. 2001;159:321–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kaden JJ, Vocke DC, Fischer CS, Grobholz R, Brueckmann M, Vahl CF, Hagl S, Haase KK, Dempfle CE, Borggrefe M. Expression and activity of matrix metalloproteinase-2 in calcific aortic stenosis. Z Kardiol. 2004;93:124–30.

    Article  CAS  PubMed  Google Scholar 

  28. Kaden JJ, Dempfle CE, Grobholz R, Tran HT, Kilic R, Sarikoc A, Brueckmann M, Vahl C, Hagl S, Haase KK, Borggrefe M. Interleukin-1 beta promotes matrix metalloproteinase expression and cell proliferation in calcific aortic valve stenosis. Atherosclerosis. 2003;170:205–11.

    Article  CAS  PubMed  Google Scholar 

  29. Osman L, Chester AH, Amrani M, Yacoub MH, Smolenski RT. A novel role of extracellular nucleotides in valve calcification: a potential target for atorvastatin. Circulation. 2006;114:I566–72.

    Article  PubMed  Google Scholar 

  30. Osman L, Amrani M, Isley C, Yacoub MH, Smolenski RT. Stimulatory effects of atorvastatin on extracellular nucleotide degradation in human endothelial cells. Nucleosides Nucleotides Nucleic Acids. 2006;25:1125–8.

    Article  CAS  PubMed  Google Scholar 

  31. Kaden JJ, Bickelhaupt S, Grobholz R, Haase KK, Sarikoc A, Kilic R, Brueckmann M, Lang S, Zahn I, Vahl C, Hagl S, Dempfle CE, Borggrefe M. Receptor activator of nuclear factor kappab ligand and osteoprotegerin regulate aortic valve calcification. J Mol Cell Cardiol. 2004;36:57–66.

    Article  CAS  PubMed  Google Scholar 

  32. Kaden JJ, Kilic R, Sarikoc A, Hagl S, Lang S, Hoffmann U, Brueckmann M, Borggrefe M. Tumor necrosis factor alpha promotes an osteoblast-like phenotype in human aortic valve myofibroblasts: a potential regulatory mechanism of valvular calcification. Int J Mol Med. 2005;16:869–72.

    CAS  PubMed  Google Scholar 

  33. Liu AC, Joag VR, Gotlieb AI. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am J Pathol. 2007;171:1407–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Aikawa E, Whittaker P, Farber M, Mendelson K, Padera RF, Aikawa M, Schoen FJ. Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering. Circulation. 2006;113:1344–52.

    Article  PubMed  Google Scholar 

  35. Chen JH, Yip CY, Sone ED, Simmons CA. Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential. Am J Pathol. 2009;174:1109–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Tintut Y, Parhami F, Bostrom K, Jackson SM, Demer LL. Camp stimulates osteoblast-like differentiation of calcifying vascular cells. Potential signaling pathway for vascular calcification. J Biol Chem. 1998;273:7547–53.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson CM, Hanson MN, Helgeson SC. Porcine cardiac valvular subendothelial cells in culture: cell isolation and growth characteristics. J Mol Cell Cardiol. 1987;19:1185–93.

    Article  CAS  PubMed  Google Scholar 

  38. Selvamurugan N, Kwok S, Alliston T, Reiss M, Partridge NC. Transforming growth factor-beta 1 regulation of collagenase-3 expression in osteoblastic cells by cross-talk between the smad and mapk signaling pathways and their components, smad2 and runx2. J Biol Chem. 2004;279:19327–34.

    Article  CAS  PubMed  Google Scholar 

  39. Roelen BA, Dijke P. Controlling mesenchymal stem cell differentiation by tgfbeta family members. J Orthop Sci. 2003;8:740–8.

    Article  PubMed  Google Scholar 

  40. Chang W, Parra M, Ji C, Liu Y, Eickelberg O, McCarthy TL, Centrella M. Transcriptional and post-transcriptional regulation of transforming growth factor beta type ii receptor expression in osteoblasts. Gene. 2002;299:65–77.

    Article  CAS  PubMed  Google Scholar 

  41. Rajamannan NM. Oxidative-mechanical stress signals stem cell niche mediated lrp5 osteogenesis in enos(-/-) null mice. J Cell Biochem. 2012;113:1623–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Stringa E, Filanti C, Giunciuglio D, Albini A, Manduca P. Osteoblastic cells from rat long bone. I. Characterization of their differentiation in culture. Bone. 1995;16:663–70.

    Article  CAS  PubMed  Google Scholar 

  43. Shao JS, Cheng SL, Pingsterhaus JM, Charlton-Kachigian N, Loewy AP, Towler DA. Msx2 promotes cardiovascular calcification by activating paracrine wnt signals. J Clin Invest. 2005;115:1210–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Kirton JP, Crofts NJ, George SJ, Brennan K, Canfield AE. Wnt/beta-catenin signaling stimulates chondrogenic and inhibits adipogenic differentiation of pericytes: potential relevance to vascular disease? Circ Res. 2007;101:581–9.

    Article  CAS  PubMed  Google Scholar 

  45. Rajamannan NM. The role of lrp5/6 in cardiac valve disease: Ldl-density-pressure theory. J Cell Biochem. 2011;112(9):2222–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Rajamannan NM. The role of lrp5/6 in cardiac valve disease: experimental hypercholesterolemia in the apoe-/-/lrp5-/- mice. J Cell Biochem. 2011;112:2987–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini M. Rajamannan MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Rajamannan, N.M., Cicek, M., Hawse, J.R., Spelsberg, T.C., Subramaniam, M. (2014). In Vitro Cell Culture Model of Calcification: Molecular Regulation of Myofibroblast Differentiation to an Osteoblast Phenotype. In: Rajamannan, N. (eds) Molecular Biology of Valvular Heart Disease. Springer, London. https://doi.org/10.1007/978-1-4471-6350-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6350-3_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6349-7

  • Online ISBN: 978-1-4471-6350-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics