Skip to main content

A Design for Disassembly Approach to Analyze and Manage End-of-Life Options for Industrial Products in the Early Design Phase

  • Chapter
  • First Online:
  • 2565 Accesses

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

Abstract

In modern society there has been an increase in consumption and discard of goods and products due to the high growth of the world population. Moreover, in the manufacturing field rapid technology cycles quickly render products obsolete and as a consequence consumers dispose of products more intensively. Product disassembly is becoming an important phase of the product lifecycle to consider from the environmental and economic point of view. It occurs to minimize the maintenance time and describe the End-of-Life (EoL) strategies, for example component reuse/recycling. These EoL closed-loop scenarios should be considered during the early phases of design process when decisions influence product architecture and in the product structure. In this context, the purpose of this chapter is to describe an approach to support the designer’s evaluation of disassemblability by using the 3D CAD model structure and suitable key indices related to product features and environmental costs. A software system allows the product model to be analyzed and evaluates the product disassemblability degree. Experimental case studies facilitate the approach demonstration and highlights product environmental performance due to the application of the proposed approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CAD:

Computer aided design

DB:

Database

DFD:

Design for disassembly

DFE:

Design for environment

DFx:

Design for x

DFPR:

Design for product retirement

DFR:

Design for recycling/reusing/remanufacturing

EOL:

End of life

EU:

European Union

ICT:

Information and communication technology

LCA:

Life cycle assessment

ND:

New design

OD:

Original design

PCB:

Print circuit board

PLM:

Product lifecycle management

PP:

Polypropylene

SLCA:

Simplified life cycle assessment

US:

United States

References

  • Adenso-Díaz B, García-Carbajal S, Lozano S (2007) An efficient GRASP algorithm for disassembly sequence planning. OR Spectr 29(3):535–549

    Article  MATH  Google Scholar 

  • Ashby MF (2009) Materials and the environment: eco-informed material choice. Elsevier, Oxford

    Google Scholar 

  • Bogue R (2007) Design for disassembly: a critical twenty-first century discipline. Assembly Autom 27(4):285–289. doi:10.1108/01445150710827069

    Article  Google Scholar 

  • Boothroyd G, Dewhurst P, Knight W (2002) Product design for manufacture and assembly third edition. Taylor and Francis, New York

    Google Scholar 

  • Brissaud D et al (2007) Product Eco-design and materials: current status and future prospected. 1st International seminar on society and materials

    Google Scholar 

  • BS 8887-2 (2009) Design for manufacture, assembly, disassembly and end-of-life processing (MADE)

    Google Scholar 

  • Capelli F, Delogu M, Pierini M, Schiavone F (2007) Design for disassembly: a methodology for identifying the optimal disassembly sequence. J Eng Des 18(6):563–575. doi:10.1080/09544820601013019

    Article  Google Scholar 

  • Cerdan C, Gazulla C, Raugei M, Martinez E, Palmer PF (2009) Proposal for new quantitative eco-design indicators: a first case study. J Clean Prod 17(18):1638–1643. doi:10.1016/j.jclepro.2009.07.010

    Article  Google Scholar 

  • Chan JWK, Tong TKL (2007) Multi-criteria material selections and end-of-Life product strategy: Grey relational analysis approach. Mater Des 28(5):1539–1546. doi:10.1016/j.matdes.2006.02.016

    Article  Google Scholar 

  • Curran MA (1996) Environmental life cycle assessment. McGraw-Hill, New York

    Google Scholar 

  • Das SK, Yedlarajiah P, Narendra R (2000) An approach for estimating the EOL product disassembly effort and cost. Int J Prod Res 38(3):657–673

    Article  MATH  Google Scholar 

  • Dewhurst P (1993) Product design for manufacture: design for disassembly. Ind Eng 25:26–28

    Google Scholar 

  • Dewulf W, Willems B, Duflou JR (2006) Estimating the environmental profile of early design concepts. In: Innovation in life cycle engineering and sustainable development, Part 3. Springer, Netherlands

    Google Scholar 

  • Dini G, Failli F, Santochi M (2001) A disassembly planning software system for the optimization of recycling processes. Prod Plan Control Manag Oper 12(1):2–12. doi:10.1080/09537280150203924

    Article  Google Scholar 

  • European Parliament and Council (2003) Directive 2002/96/EC of 27 January 2003 on waste electrical and electronic equipment (WEEE)

    Google Scholar 

  • European Parliament and Council (2003) Directive 2002/95/EC of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)

    Google Scholar 

  • European Parliament and Council (2000) Directive 2000/53/EC of 18 September 2000 on end-of life vehicles

    Google Scholar 

  • Gehin A, Zwolinski P, Brissaud D (2008) A tool to implement sustainable end-of-life strategies in the product development phase. J Clean Prod 16(5):566–576. doi:10.1016/j.jclepro.2007.02.012

    Article  Google Scholar 

  • Goedkoop M, Spriensma R (2000) The eco-indicator 99. A damage oriented method for life cycle impact assessment methodology. Report 17 April 2000, Second edition

    Google Scholar 

  • González B, Adenso-Díaz B (2005) A bill of materials-based approach for EOL decision making in design for the environment. Int J Prod Res 43:2071–2099. doi:10.1080/00207540412331333423

    Article  MATH  Google Scholar 

  • Gungor A, Gupta SM (1998) Disassembly sequence planning for products with defective parts in product recovery. Comput Ind Eng 35(1–2):161–165

    Article  Google Scholar 

  • Gungor A, Gupta SM (2001) Disassembly sequence plan generation using a branch-and-bound algorithm. Int J Prod Res 39(3):481–509

    Article  Google Scholar 

  • Hauschild MZ, Jeswiet J, Alting L (2004) Design for environment—do we get the focus right?. CIRP Ann Manuf Technol 53(1):1–4. doi:10.1016/S0007-8506(07)60631-3

    Google Scholar 

  • Herrmann C, Frad A, Luger T (2008) Integrating the end-of-life evaluation and planning in the product management process. Prog Ind Ecol 5(1/2):44–64

    Google Scholar 

  • Ishii K, Eubanks CF, Marks M (1993) Evaluation methodology for post-manufacturing issues in life-cycle design. Concurr Eng Res Appl 1(1):61–68. doi:10.1177/1063293X9300100107

    Article  Google Scholar 

  • ISO 14040 (2006) Environmental management—life cycle assessment—principles and framework

    Google Scholar 

  • ISO/TR 14062 (2002) Environmental management—integrating environmental aspects into product design and development

    Google Scholar 

  • Kaebernick H, Sun M, Kara S (2003) Simplified life cycle assessment for the early design stages of industrial products. CIRP Ann Manuf Technol 52:25–28

    Article  Google Scholar 

  • Kara S, Pornprasitpol P, Kaebernick H (2005) A selective disassembly methodology for end-of-life products. Assembly Autom 25(2):124–134. doi:10.1108/01445150510590488

    Article  Google Scholar 

  • Kuo TC, Huang SH, Zhang HC (2001) Design for manufacture and design for X: concepts, applications, and perspectives. Comput Ind Eng 41:241–260

    Article  Google Scholar 

  • Kwak MJ, Hong YS, Cho NW (2009) Eco-architecture analysis for end-of-life decision making. Int J Prod Res 47(22):6233–6259

    Article  Google Scholar 

  • Lambert AJD (2001) Automatic determination of transition matrices in optimal disassembly sequence generation. Proceedings of the IEEE international symposium on assembly and task planning, pp 220–225. doi: 10.1109/ISATP.2001.928993

  • Luttropp C, Lagerstedt J (2006) Eco-design and the ten golden rules: generic advice for merging environmental aspects into product development. J Clean Prod 14:1396–1408. doi:10.1016/j.jclepro.2005.11.022

    Article  Google Scholar 

  • Miheclic JR, Paterson KG, Phillips LD, Zhang Q et al (2008) Educating engineers in the sustainable futures model with a global perspective. Taylor & Francis, London

    Google Scholar 

  • Mo J, Zhang Q, Gadh R (2002) Virtual disassembly. Int J CAD/CAM 2(1):29–37

    Google Scholar 

  • Ramani K, Ramanujan D, Bernstein WZ, Zhao F, Sutherland J, Handwerker C, Choi JK, Kim H, Thurston D (2010) Integrated sustainable life cycle design: a review. J Mech Des 132(9)

    Google Scholar 

  • Rose CM (2001) Design for environment: a method for formulating product end-of-life strategies. Dissertation, Stanford University

    Google Scholar 

  • Rose CM, Ishii K (1999) Product end-of-life strategy categorization design tool. J Electron Manuf 9(1):41–51. doi:10.1142/S0960313199000271

    Article  Google Scholar 

  • Senthil K, Ong SK, Nee AYC, Tan RBH (2003) A proposed tool to integrate environmental and economical assessments of product. Environ Impact Asses 23:51–72

    Article  Google Scholar 

  • Sousa I, Wallace D (2006) Product classification to support approximate life-cycle assessment of design concepts. Technol Forecast Soc Change 73:228–249

    Article  Google Scholar 

  • Srinivasan H, Shyamsundar N, Gadh R (1997) A framework for virtual disassembly analysis. J Intell Manuf 8:277–295. doi:10.1023/A:1018537611535

    Article  Google Scholar 

  • United States (U.S.) Environmental Protection Agency (2000). Solid waste and emergency response EPA 530-N-00-007

    Google Scholar 

  • Villalba G, Segarra M et al (2004) Using the recyclability index of materials as a tool for design for disassembly. Ecol Econ 50:195–200. doi:10.1016/j.ecolecon.2004.03.026

    Article  Google Scholar 

  • Zussman E, Kriwet A, Seliger G (1994) Disassembly-oriented assessment methodology to support design for recycling. CIRP Ann Manuf Technol 43(1):9–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Favi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Favi, C., Germani, M. (2014). A Design for Disassembly Approach to Analyze and Manage End-of-Life Options for Industrial Products in the Early Design Phase. In: Henriques, E., Pecas, P., Silva, A. (eds) Technology and Manufacturing Process Selection. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-1-4471-5544-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5544-7_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5543-0

  • Online ISBN: 978-1-4471-5544-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics