Skip to main content

Titanium Porous-Coated Implant-Bone Interface in Total Joint Arthroplasty

  • Chapter
  • First Online:

Abstract

Cementless fixation has been a principal method for fixation of orthopedic implants for decades. Accordingly, different rough and porous surfaces have been developed and applied in clinical use. A variety of these coatings are continuously investigated in order to improve bone–implant integration and enhance osteogenesis at the implant surface. One of the most important elements used in joint arthroplasty is titanium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. vom Hrn William Gregor. Beobachtungen und Versuche über den Menakanite, einen in Cornwall gefundenen mangetischen Sand; (Obervations and experiments in a magnetic sand found in Cornwall). Crell’s Chemische Annalen. 1971;15:40–54, 103–19.

    Google Scholar 

  2. Kroll W. “Verformbares Titan und Zirkon” (Eng: Ductile Titanium and Zirconium) Zeitschrift für anorganische und allgemeine. Chemie. 1937;234:42–5.

    CAS  Google Scholar 

  3. Kroll WJ. The production of ductile titanium. Trans Electrochem Soc. 1940;78:35–47.

    Google Scholar 

  4. Donachie Jr MJ. TITANIUM: a technical guide. Metals Park: ASM International; 1988. p. 11.

    Google Scholar 

  5. Stwertka A. Titanium. In: Guide to the elements (Revised ed.). New York: Oxford University Press; 1998. p. 81–2.

    Google Scholar 

  6. Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O, Ohman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg. 1997;16S:1–132.

    Google Scholar 

  7. Collings EW. The physical metallurgy of titanium alloys. In: Gegel HL, editor. ASM series in metal processing. Cleveland/Metals Park: American Society for Metals; 1984.

    Google Scholar 

  8. Polmear JJ. Chapter6. Titanium alloys. In: Light alloys. London: Edward Arnold Publ; 1981.

    Google Scholar 

  9. Long M, Rack HJ. Titanium alloys in total joint replacement–a materials science perspective. Biomaterials. 1998;19:1621–39.

    PubMed  CAS  Google Scholar 

  10. Samuel S, Nag S, Nasrazadani S, Ukirde V, El Bouanani M, Mohandas A, Nguyen K, Banerjee R. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications. J Biomed Mater Res A. 2010;94:1251–6.

    PubMed  Google Scholar 

  11. Guillemot F. Recent advances in the design of titanium alloys for orthopedic applications. Expert Rev Med Devices. 2005;2:741–8.

    PubMed  CAS  Google Scholar 

  12. Larsson C, Thomsen P, Lausmaa J, Rodahl M, Kasemo B, Ericson LE. Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology. Biomaterials. 1994;15:1062–74.

    PubMed  CAS  Google Scholar 

  13. Larsson C, Thomsen P, Aronsson BO, Rodahl M, Lausmaa J, Kasemo B, Ericson LE. Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials. 1996;17:605–16.

    PubMed  CAS  Google Scholar 

  14. Nishiguchi S, Nakamura T, Kobayashi M, Kim HM, Miyaji F, Kokubo T. The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials. 1999;20:491–500.

    PubMed  CAS  Google Scholar 

  15. Baleani M, Viceconti M, Toni A. The effect of sandblasting treatment on endurance properties of titanium alloy hip prostheses. Artif Organs. 2000;24:296–9.

    PubMed  CAS  Google Scholar 

  16. Degasne I, Baslé MF, Demais V, Huré G, Lesourd M, Grolleau B, Mercier L, Chappard D. Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces. Calcif Tissue Int. 1999;64:499–507.

    PubMed  CAS  Google Scholar 

  17. Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006;27:2651–70.

    PubMed  CAS  Google Scholar 

  18. Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials. 2006;27:5892–900.

    PubMed  CAS  Google Scholar 

  19. Pilliar RM. Porous biomaterials. In: Williams D, editor. Concise encyclopedia of medical & dental materials. Oxford/New York/Cambridge, MA: Pergamon Press and the MIT Press; 1990. p. 312–9.

    Google Scholar 

  20. Jasty M, Rubash HE, Paiement GD, Bragdon CR, Parr J, Harris WH. Porous-coated uncemented components in experimental total hip arthroplasty in dogs. Effect of plasma-sprayed calcium phosphate coatings on bone ingrowth. Clin Orthop. 1992;280:300–9.

    PubMed  Google Scholar 

  21. Zhang C, Leng Y, Chen J. Elastic and plastic behavior of plasma-sprayed hydroxyapatite coatings on a Ti-6Al-4V substrate. Biomaterials. 2001;22:1357–63.

    PubMed  CAS  Google Scholar 

  22. Massaro C, Baker MA, Cosentino F, Ramires PA, Klose S, Milella E. Surface and biological evaluation of hydroxyapatite-based coatings on titanium deposited by different techniques. J Biomed Mater Res. 2001;58:651–7.

    PubMed  CAS  Google Scholar 

  23. Chen D, Bertollo N, Lau A, Taki N, Nishino T, Mishima H, Kawamura H, Walsh WR. Osseointegration of porous titanium implants with and without electrochemically deposited DCPD coating in an ovine model. J Orthop Surg Res. 2011;6:56.

    PubMed  Google Scholar 

  24. Bigi A, Boanini E, Bracci B, Facchini A, Panzavolta S, Segatti F, Sturba L. Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomaterials. 2005;26:4085–9.

    PubMed  CAS  Google Scholar 

  25. Liu Y, Layrolle P, de Bruijn J, van Blitterswijk C, de Groot K. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. J Biomed Mater Res. 2001;57:327–35.

    PubMed  CAS  Google Scholar 

  26. Fernandez-Pradas JM, Clèries L, Martinez E, Sardin G, Esteve J, Morenza JL. Influence of thickness on the properties of hydroxyapatite coatings deposited by KrF laser ablation. Biomaterials. 2001;22:2171–5.

    PubMed  CAS  Google Scholar 

  27. Yang Y, Kim KH, Ong JL. A review on calcium phosphate coatings produced using a sputtering process–an alternative to plasma spraying. Biomaterials. 2005;26:327–37.

    PubMed  CAS  Google Scholar 

  28. Froimson MI, Garino J, Machenaud A, Vidalain JP. Minimum 10-year results of a tapered, titanium, hydroxyapatite-coated hip stem: an independent review. J Arthroplasty. 2007;22:1–7.

    PubMed  Google Scholar 

  29. Haenle M, Fritsche A, Zietz C, Bader R, Heidenau F, Mittelmeier W, Gollwitzer H. An extended spectrum bactericidal titanium dioxide (TiO2) coating for metallic implants: in vitro effectiveness against MRSA and mechanical properties. J Mater Sci Mater Med. 2011;22:381–7.

    PubMed  CAS  Google Scholar 

  30. Harman MK, Banks SA, Hodge WA. Wear analysis of a retrieved hip implant with titanium nitride coating. J Arthroplasty. 1997;12:938–45.

    PubMed  CAS  Google Scholar 

  31. Balla VK, Xue W, Bose S, Bandyopadhyay A. Laser-assisted Zr/ZrO(2) coating on Ti for load-bearing implants. Acta Biomater. 2009;5:2800–9.

    PubMed  CAS  Google Scholar 

  32. Kornu R, Maloney WJ, Kelly MA, Smith RL. Osteoblast adhesion to orthopaedic implant alloys: effects of cell adhesion molecules and diamond-like carbon coating. J Orthop Res. 1996;14:871–7.

    PubMed  CAS  Google Scholar 

  33. Scott DF, Jaffe WL. Host-bone response to porous-coated cobalt-chrome and hydroxyapatite-coated titanium femoral components in hip arthroplasty: dual-energy X-ray absorptiometry analysis of paired bilateral cases at 5 to 7 years. J Arthroplasty. 1996;11:429–37.

    PubMed  CAS  Google Scholar 

  34. Røkkum M, Reigstad A. Total hip replacement with an entirely hydroxyapatite -coated prosthesis: 5 years’ follow-up of 94 consecutive hips. J Arthroplasty. 1999;14:689–700.

    PubMed  Google Scholar 

  35. Hirshhom HS, McBeath AA, Dustoor MR. Porous titanium surgical implant materials. J Biomed Mater Res Syurp 1971;2:49–67.

    Google Scholar 

  36. Lueck RA, Galante J, Rostoker W, Ray RD. Development of an open pore metallic implant to permit attachment to bone. Surg Forum. 1969;20:456–7.

    PubMed  CAS  Google Scholar 

  37. Spector M. Historical review of porous-coated implants. J Arthroplasty. 1987;2:163–77.

    PubMed  CAS  Google Scholar 

  38. Galante J, Rostoker W, Lueck R, Ray RD. Sintered fiber metal composites as a basis for attachment of implants to bone. J Bone Joint Surg Am. 1971;53A:101–4.

    Google Scholar 

  39. Lembert E, Galante J, Rostoker W. Fixation of skeletal replacement by fiber metal composites. Clin Orthop. 1972;87:303–10.

    PubMed  CAS  Google Scholar 

  40. Hahn H, Palich W. Preliminary evaluation of porous metal surfaced titanium for orthopedic implants. J Biomed Mater Res. 1970;4:571–7.

    PubMed  CAS  Google Scholar 

  41. Turner TM, Sumner DR, Urban RM, Rivero DP, Galante JO. A comparative study of porous coatings in a weight-bearing total hip-arthroplasty model. J Bone Joint Surg Am. 1986;68A:1396–409.

    Google Scholar 

  42. Chao EYS, Galante JO. Animal study of titanium fiber metal prostheses for segmental bone and joint replacement. In: Kotz R, editor. Proceedings of the second International workshop of the design and application of tumor prostheses for bone and joint reconstruction, Vienna; 1983. p. 123–8.

    Google Scholar 

  43. Chen PQ, Turner TM, Ronnigen H, Galante J, Urban R, Rostoker W. A canine cementless total hip prosthesis model. Clin Orthop. 1983;176:24–33.

    PubMed  CAS  Google Scholar 

  44. Thomas KA, Kay JF, Cook SD, Jarcho M. The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials. J Biomed Mater Res. 1987;21:1395–414.

    PubMed  CAS  Google Scholar 

  45. Cook SD, Thomas KA, Kay JF, Jarcho M. Hydroxyapatite-coated titanium for orthopedic implant applications. Clin Orthop. 1988;232:225–43.

    PubMed  CAS  Google Scholar 

  46. Cook SD, Thomas KA, Kay JF, Jarcho M. Hydroxyapatite-coated porous titanium for use as an orthopedic biologic attachment system. Clin Orthop. 1988;230:303–12.

    PubMed  CAS  Google Scholar 

  47. Cook SD, Thomas KA, Kay J. Experimental coating defects in hydroxylapatite-coated implants. Clin Orthop. 1991;265:280–90.

    PubMed  Google Scholar 

  48. Søballe K, Hansen ES, Brockstedt-Rasmussen H, Pedersen CM, Bünger C. Hydroxyapatite coating enhances fixation of porous coated implants. A comparison in dogs between press fit and noninterference fit. Acta Orthop Scand. 1990;61:299–306.

    PubMed  Google Scholar 

  49. Maistrelli GL, Mahomed N, Garbuz D, Fornasier V, Harrington IJ, Binnington A. Hydroxyapatite coating on carbon composite hip implants in dogs. J Bone Joint Surg Br. 1992;74B:452–6.

    Google Scholar 

  50. Karabatsos B, Myerthall SL, Fornasier VL, Binnington A, Maistrelli GL. Osseointegration of hydroxyapatite porous-coated femoral implants in a canine model. Clin Orthop. 2001;392:442–9.

    PubMed  Google Scholar 

  51. Coathup MJ, Blackburn J, Goodship AE, Cunningham JL, Smith T, Blunn GW. Role of hydroxyapatite coating in resisting wear particle migration and osteolysis around acetabular components. Biomaterials. 2005;26:4161–9.

    PubMed  CAS  Google Scholar 

  52. Wheeler DL, Campbell AA, Graff GL, Miller GJ. Histological and biomechanical evaluation of calcium phosphate coatings applied through surface-induced mineralization to porous titanium implants. J Biomed Mater Res. 1997;34:539–43.

    PubMed  CAS  Google Scholar 

  53. Nakashima Y, Hayashi K, Inadome T, Uenoyama K, Hara T, Kanemaru T, Sugioka Y, Noda I. Hydroxyapatite-coating on titanium arc sprayed titanium implants. J Biomed Mater Res. 1997;35:287–98.

    PubMed  CAS  Google Scholar 

  54. Jakobsen T, Baas J, Kold S, Bechtold JE, Elmengaard B, Søballe K. Local bisphosphonate treatment increases fixation of hydroxyapatite-coated implants inserted with bone compaction. J Orthop Res. 2009;27:189–94.

    PubMed  CAS  Google Scholar 

  55. Jakobsen T, Kold S, Bechtold JE, Elmengaard B, Søballe K. Local alendronate increases fixation of implants inserted with bone compaction: 12-week canine study. J Orthop Res. 2007;25:432–41.

    PubMed  CAS  Google Scholar 

  56. Lamberg A, Bechtold JE, Baas J, Søballe K, Elmengaard B. Effect of local TGF-beta1 and IGF-1 release on implant fixation: comparison with hydroxyapatite coating: a paired study in dogs. Acta Orthop Scand. 2009;80:499–504.

    Google Scholar 

  57. Sumner DR, Turner TM, Urban RM, Virdi AS, Inoue N. Additive enhancement of implant fixation following combined treatment with rhTGF-beta2 and rhBMP-2 in a canine model. J Bone Joint Surg Am. 2006;88A:806–17.

    Google Scholar 

  58. Greenfield EJ. Mounting for artificial teeth, U.S. Patent Office, Serial No. 478360, Patented Dec 14, 1909.

    Google Scholar 

  59. Grindlay JH, Clagett OT. A plastic sponge prosthesis for use after pneumonectomy; preliminary report of an experimental study. Proc Staff Meet Mayo Clin. 1949;24:538.

    PubMed  CAS  Google Scholar 

  60. Agins HJ, Alcock NW, Bansal M, Salvati EA, Wilson PD, Pellicci PM, Bullough PG. Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis. J Bone Joint Surg Am. 1998;70A:347–56.

    Google Scholar 

  61. Head WC, Bauk DJ, Emerson RH. Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin Orthop. 1995;70:85–90.

    Google Scholar 

  62. Meachim G, Williams DF. Changes in nonosseous tissue adjacent to titanium implants. J Biomed Mater Res. 1973;7:555–72.

    PubMed  CAS  Google Scholar 

  63. Ni GX, Lu WW, Chiu KY, Fong DY. Cemented or uncemented femoral component in primary total hip replacement? A review from a clinical and radiological perspective. J Orthop Surg. 2005;13:96–105.

    CAS  Google Scholar 

  64. Urban RM, Jacobs JJ, Sumner DR, Peters CL, Voss FR, Galante JO. The bone-implant interface of femoral stems with non-circumferential porous coating. J Bone Joint Surg Am. 1996;78A:1068–81.

    Google Scholar 

  65. Sun L, Berndt CC, Gross KA, Kucuk A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review. J f Biomed Mater Res. 2001;58:570–92.

    CAS  Google Scholar 

  66. Semlitsch M. Titanium alloys for hip joint replacements. Clin Mater. 1987;2:1–13.

    Google Scholar 

  67. Rothman RH, Cohn JC. Cemented versus cementless total hip arthroplasty. A critical review. Clin Orthop. 1990;254:153–69.

    PubMed  Google Scholar 

  68. Bloebaum RD, Bachus KN, Momberger NG, Hofmann AA. Mineral apposition rates of human cancellous bone at the interface of porous coated implants. J Biomed Mater Res. 1994;28:537–44.

    PubMed  CAS  Google Scholar 

  69. Dorr LD, Luckett M, Conaty JP. Total hip arthroplasties in patients younger than 45 years. A nine- to ten-year follow-up study. Clin Orthop. 1990;260:215–9.

    PubMed  Google Scholar 

  70. Callaghan JJ. Results of primary total hip arthroplasty in young patients. Instr Course Lect. 1994;43:315–21.

    PubMed  CAS  Google Scholar 

  71. Smith SE, Garvin KL, Jardon OM, Kaplan PA. Uncemented total hip arthroplasty. Prospective analysis of the tri-lock femoral component. Clin Orthop. 1991;269:43–50.

    PubMed  Google Scholar 

  72. Bourne RB, Rorabeck CH, Ghazal ME, Lee MH. Pain in the thigh following total hip replacement with a porous-coated anatomic prosthesis for osteoarthrosis. A five-year follow-up study. J Bone Joint Surg Am. 1994;76A:1464–70.

    Google Scholar 

  73. Maric Z, Karpman RR. Early failure of noncemented porous coated anatomic total hip arthroplasty. Clin Orthop. 1992;278:116–20.

    PubMed  Google Scholar 

  74. Engh CA, Hooten JP, Zettl-Schaffer KF, Ghaffarpour M, McGovern TF, Macalino GE, Zicat BA. Porous-coated total hip replacement. Clin Orthop. 1994;298:89–96.

    PubMed  Google Scholar 

  75. Mallory TH, Head WC, Lombardi AV, Emerson RH, Eberle RW, Mitchell MB. Clinical and radiographic outcome of a cementless, titanium, plasma spray-coated total hip arthroplasty femoral component. Justification for continuance of use. J Arthroplasty. 1996;11:653–60.

    PubMed  CAS  Google Scholar 

  76. Manley MT, Capello WN, D’Antonio JA, Edidin AA, Geesink RG. Fixation of acetabular cups without cement in total hip arthroplasty. A comparison of three different implant surfaces at a minimum duration of follow-up of five years. J Bone Joint Surg Am. 1998;80A:1175–85.

    Google Scholar 

  77. Hofmann AA, Feign ME, Klauser W, VanGorp CC, Camargo MP. Cementless primary total hip arthroplasty with a tapered, proximally porous-coated titanium prosthesis: a 4- to 8-year retrospective review. J Arthroplasty. 2000;15:833–9.

    PubMed  CAS  Google Scholar 

  78. Meding JB, Keating EM, Ritter MA, Faris PM, Berend ME. Minimum ten-year follow-up of a straight-stemmed, plasma-sprayed, titanium-alloy, uncemented femoral component in primary total hip arthroplasty. J Bone Joint Surg Am. 2004;86A:92–7.

    Google Scholar 

  79. Geesink RG, de Groot K, Klein CP. Bonding of bone to apatite-coated implants. J Bone Joint Surg Br. 1988;70B:17–22.

    Google Scholar 

  80. Tanzer M, Kantor S, Rosenthall L, Bobyn JD. Femoral remodeling after porous coated total hip arthroplasty with and without hydroxyapatite-tricalcium phosphate coating: a prospective randomized trial. J Arthroplasty. 2001;16:552–8.

    PubMed  CAS  Google Scholar 

  81. Yee AJ, Kreder HK, Bookman I, Davey JR. A randomized trial of hydroxyapatite coated prostheses in total hip arthroplasty. Clin Orthop. 1999;366:120–32.

    PubMed  Google Scholar 

  82. Miyakawa S, Kawamura H, Mishima H, Yasumoto J. Grit-blasted and hydroxyapatite-coated total hip arthroplasty: an 11- to 14-year follow-up study. J Orthop Sci. 2004;9:462–7.

    PubMed  CAS  Google Scholar 

  83. Vaughn BK, Lombardi AV, Mallory TH. Clinical and radiographic experience with a hydroxyapatite-coated titanium plasma-sprayed porous implant. Semin Arthroplasty. 1991;2:309–16.

    PubMed  CAS  Google Scholar 

  84. Kim YH, Kim JS, Oh SH, Kim JM. Comparison of porous-coated titanium femoral stems with and without hydroxyapatite coating. J Bone Joint Surg Am. 2003;85A:1682–8.

    Google Scholar 

  85. Kim YH, Kim JS, Joo JH, Park JW. Is hydroxyapatite coating necessary to improve survivorship of porous-coated titanium femoral stem? J Arthroplasty. 2012;27:559–63.

    PubMed  Google Scholar 

  86. Bøe BG, Röhrl SM, Heier T, Snorrason F, Nordsletten L. A prospective randomized study comparing electrochemically deposited hydroxyapatite and plasma-sprayed hydroxyapatite on titanium stems. Acta Orthop Scand. 2011;82:13–9.

    Google Scholar 

  87. Fielding GA, Roy M, Bandyopadhyay A, Bose S. Antibacterial and biological characteristics of plasma sprayed silver and strontium doped hydroxyapatite coatings. Acta Biomater. 2012. doi:10.1016/j.actbio.2012.04.004.

    PubMed  Google Scholar 

  88. Bourne RB, Rorabeck CH. A critical look at cementless stems. Taper designs and when to use alternatives. Clin Orthop. 1998;355:212–23.

    PubMed  Google Scholar 

  89. Bugbee WD, Culpepper WJ, Engh CA, Engh CA. Long-term clinical consequences of stress-shielding after total hip arthroplasty without cement. J Bone Joint Surg Am. 1997;79A:1007–12.

    Google Scholar 

  90. Haddad RJ, Cook SD, Thomas KA. Biological fixation of porous-coated implants. J Bone Joint Surg Am. 1987;69A:1459–66.

    Google Scholar 

  91. Sarmiento A, Turner TM, Latta LL, Tarr RR. Factors contributing to lysis of the femoral neck in total hip arthroplasty. Clin Orthop. 1976;145:208–12.

    Google Scholar 

  92. Emerson RH, Sanders SB, Head WC, Higgins L. Effect of circumferential plasma-spray porous coating on the rate of femoral osteolysis after total hip arthroplasty. J Bone Joint Surg Am. 1999;81A:1291–8.

    Google Scholar 

  93. Kitamura S, Hasegawa Y, Iwasada S, Yamauchi K, Kawamoto K, Kanamono T, Iwata H. Catastrophic failure of cementless total hip arthroplasty using a femoral component without surface coating. J Arthroplasty. 1999;14:918–24.

    PubMed  CAS  Google Scholar 

  94. Butler JB, Lansky D, Duwelius PJ. Prospective evaluation of total hip arthroplasty with a cementless, anatomically designed, porous-coated femoral implant: mean 11-year follow-up. J Arthroplasty. 2005;20:709–16.

    PubMed  CAS  Google Scholar 

  95. Hartzband MA, Glassman AH, Goldberg VM, Jordan LR, Crowninshield RD, Fricka KB, Jordan LC. Survivorship of a low-stiffness extensively porous-coated femoral stem at 10 years. Clin Orthop. 2010;468:433–40.

    PubMed  Google Scholar 

  96. Lombardi AV, Berend KR, Mallory TH, Skeels MD, Adams JB. Survivorship of 2000 tapered titanium porous plasma-sprayed femoral components. Clin Orthop. 2009;467:146–54.

    PubMed  Google Scholar 

  97. Buechel FF, Buechel FF, Helbig TE, D’Alessio J, Pappas MJ. Two- to 12-year evaluation of cementless Buechel-Pappas total hip arthroplasty. J Arthroplasty. 2004;19:1017–27.

    PubMed  Google Scholar 

  98. Rodriguez JA, Deshmukh AJ, Klauser WU, Rasquinha VJ, Lubinus P, Ranawat CS. Patterns of osseointegration and remodeling in femoral revision with bone loss using modular, tapered, fluted, titanium stems. J Arthroplasty. 2011;26:1409–17.

    PubMed  Google Scholar 

  99. Hwang BH, Lee WS, Park KK, Yang IH, Han CD. Straight tapered titanium stem with alumina bearing in cementless primary total hip arthroplasty: a minimum 5-year follow-up. J Arthroplasty. 2011;26:1310–7.

    PubMed  Google Scholar 

  100. Jafari SM, Bender B, Coyle C, Parvizi J, Sharkey PF, Hozack WJ. Do tantalum and titanium cups show similar results in revision hip arthroplasty? Clin Orthop. 2010;468:459–65.

    PubMed  Google Scholar 

  101. Yue EJ, Duffy GP. Impaction grafting using a cemented porous-coated modular acetabular component. J Arthroplasty. 2008;23:466–9.

    PubMed  Google Scholar 

  102. Klaassen MA, Martínez-Villalobos M, Pietrzak WS, Mangino GP, Guzman DC. Midterm survivorship of a press-fit, plasma-sprayed, tri-spike acetabular component. J Arthroplasty. 2009;24:391–9.

    PubMed  Google Scholar 

  103. Meding JB, Galley MR, Ritter MA. High survival of uncemented proximally porous-coated titanium alloy femoral stems in osteoporotic bone. Clin Orthop. 2010;468:441–7.

    PubMed  Google Scholar 

  104. Reitman RD, Emerson R, Higgins L, Head W. Thirteen year results of total hip arthroplasty using a tapered titanium femoral component inserted without cement in patients with type C bone. J Arthroplasty. 2003;18:116–21.

    PubMed  Google Scholar 

  105. Engh CA, Hopper RH, Engh CA. Long-term porous-coated cup survivorship using spikes, screws, and press-fitting for initial fixation. J Arthroplasty. 2004;19:54–60.

    PubMed  Google Scholar 

  106. Dorr LD, Wan Z, Cohen J. Hemispheric titanium porous coated acetabular component without screw fixation. Clin Orthop. 1998;351:158–68.

    PubMed  Google Scholar 

  107. Sarmiento A, Gruen TA. Radiographic analysis of a low-modulus titanium-alloy femoral total hip component. Two to six-year follow-up. J Bone Joint Surg Am. 1985;67A:48–56.

    Google Scholar 

  108. Jergesen HE, Karlen JW. Clinical outcome in total hip arthroplasty using a cemented titanium femoral prosthesis. J Arthroplasty. 2002;17:592–9.

    PubMed  Google Scholar 

  109. Akiyama H, Kawanabe K, Yamamoto K, So K, Kuroda Y, Nakamura T. Clinical outcomes of cemented double-tapered titanium femoral stems: a minimum 5-year follow-up. J Orthop Sci. 2011;16:689–97.

    PubMed  CAS  Google Scholar 

  110. Bowditch M, Villar R. Is titanium so bad? Medium-term outcome of cemented titanium stems. J Bone Joint Surg Br. 2001;83B:680–5.

    Google Scholar 

  111. Boyer P, Lazennec JY, Poupon J, Rousseau MA, Ravaud P, Catonné Y. Clinical and biological assessment of cemented titanium femoral stems: an 11-year experience. Int Orthop. 2009;33:1209–15.

    PubMed  Google Scholar 

  112. Rostoker W, Galante JO. Some new studies of the wear behavior of ultrahigh molecular weight polyethylene. J Biomed Mater Res. 1976;10:303–10.

    PubMed  CAS  Google Scholar 

  113. Peterson CD, Hillberry BM, Heck DA. Component wear of total knee prostheses using Ti-6A1-4V, titanium nitride coated Ti-6A1-4V, and cobalt-chromium-molybdenum femoral components. J Biomed Mater Res. 1998;22:887–903.

    Google Scholar 

  114. Baldwin JL, El-Saied MR, Rubinstein RA. Uncemented total knee arthroplasty: report of 109 titanium knees with cancellous-structured porous coating. Orthopedics. 1996;19:123–30.

    PubMed  CAS  Google Scholar 

  115. La Budde JK, Orosz JF, Bonfiglio TA, Pellegrini VD. Particulate titanium and cobalt-chrome metallic debris in failed total knee arthroplasty. A quantitative histologic analysis. J Arthroplasty. 1994;9:291–304.

    PubMed  Google Scholar 

  116. Jacobs JJ, Silverton C, Hallab NJ, Skipor AK, Patterson L, Black J, Galante JO. Metal release and excretion from cementless titanium alloy total knee replacements. Clin Orthop. 1999;358:173–80.

    PubMed  Google Scholar 

  117. Onsten I, Nordqvist A, Carlsson AS, Besjakov J, Shott S. Hydroxyapatite augmentation of the porous coating improves fixation of tibial components. A randomised RSA study in 116 patients. J Bone Joint Surg Br. 1998;80B:417–25.

    Google Scholar 

  118. Bloebaum RD, Bachus KN, Jensen JW, Hofmann AA. Postmortem analysis of consecutively retrieved asymmetric porous-coated tibial components. J Arthroplasty. 1997;12:920–9.

    PubMed  CAS  Google Scholar 

  119. Kim KJ, Iwase M, Kotake S, Itoh T. Effect of bone marrow grafting on the titanium porous-coated implant in bilateral total knee arthroplasty. Acta Orthop Scand. 2007;78:116–22.

    Google Scholar 

  120. Kudo H, Iwano K, Nishino J. Cementless or hybrid total elbow arthroplasty with titanium-alloy implants. A study of interim clinical results and specific complications. J Arthroplasty. 1994;9:269–78.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros Xenakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Pakos, E.E., Xenakis, T. (2014). Titanium Porous-Coated Implant-Bone Interface in Total Joint Arthroplasty. In: Karachalios, T. (eds) Bone-Implant Interface in Orthopedic Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-5409-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5409-9_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5408-2

  • Online ISBN: 978-1-4471-5409-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics