Skip to main content

Biomaterials for Osteochondral Reconstruction

  • Chapter
  • First Online:
Developing Insights in Cartilage Repair

Abstract

The modern regenerative procedures demonstrated to offer the replacement of the articular surface with a hyaline-like tissue, but the properties of the healthy cartilage tissue are still unmatched by any available substitute. Moreover, the treatment of osteochondral lesions is even more biologically challenging since two different tissues are involved (bone and articular cartilage) with a distinctly different intrinsic healing capacity. For the repair of the entire osteochondral unit, several authors have highlighted the need for biphasic scaffolds, to reproduce the different biological and functional requirements for guiding the growth of the two tissues, and different specific scaffolds have been developed for the treatment of large chondral or osteochondral articular defects.

At the time being, among these only two scaffolds used for osteochondral regeneration are commercialized for clinical application. One is a bilayer porous PLGA-calcium-sulphate biopolymer. The second osteochondral scaffold is a nanostructured biomimetic HA-collagen scaffold with a porous 3-D tri-layer composite structure, mimicking the whole osteochondral anatomy. Other osteochondral scaffolds are still under preclinical investigation. In this chapter we focus on reviewing the available evidence on the clinical outcome of these osteochondral scaffolds, as well as on reporting the new biomaterials developed and tested in preclinical studies that show to be promising for osteochondral regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1998;47:477–86.

    PubMed  CAS  Google Scholar 

  2. Pape D, Filardo G, Kon E, van Dijk CN, Madry H. Disease-specific clinical problems associated with the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):448–62. Epub 2010 Feb 12. Review.

    Article  PubMed  Google Scholar 

  3. Kocher MS, Tucker R, Ganley TJ, Flynn JM. Management of osteochondritis dissecans of the knee: current concepts review. Am J Sports Med. 2006;34(7):1181–91.

    Article  PubMed  Google Scholar 

  4. Ahuja SC, Bullough PG. Osteonecrosis of the knee: a clinicopathological study in twenty-eights patients. J Bone Joint Surg Am. 1978;60(2):191–7.

    PubMed  CAS  Google Scholar 

  5. Kon E, Vannini F, Buda R, Filardo G, Cavallo M, Ruffilli A, Nanni M, Di Martino A, Marcacci M, Giannini S. How to treat osteochondritis dissecans of the knee: surgical techniques and new trends: AAOS exhibit selection. J Bone Joint Surg Am. 2012;94(1):e1(1–8).

    Article  Google Scholar 

  6. Gratz KR, Wong BL, Bae WC, Sah RL. The effects of focal articular defects on cartilage contact mechanism. J Orthop Res. 2009;27(5):584–92.

    Article  PubMed  Google Scholar 

  7. Henderson IJ, La Valette DP. Subchondral bone overgrowth in the presence of full-thickness cartilage defects in the knee. Knee. 2005;12(6):435–40. Epub 2005 Sep 8.

    Article  PubMed  Google Scholar 

  8. Grigolo B, Lisignoli G, Piacentini A, et al. Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAff 11): molecular, immunohistochemical and ultrastructural analysis. Biomaterials. 2002;23(4):1187–95.

    Article  PubMed  CAS  Google Scholar 

  9. Kon E, Verdonk P, Condello V, Delcogliano M, Dhollander A, Filardo G, et al. Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee: systematic clinical data review and study quality analysis. Am J Sports Med. 2009;37 Suppl 1:156S–66. Epub 2009 Oct 27.

    Article  PubMed  Google Scholar 

  10. Capito RM, Spector M. Scaffold-based articular cartilage repair. IEEE Eng Med Biol Mag. 2003;22(5):42–50.

    Article  PubMed  Google Scholar 

  11. Lee SH, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev. 2007;59(4–5):339–59. Epub 2007 Apr 12.

    Article  PubMed  CAS  Google Scholar 

  12. Ochi M, Uchio Y, Tobita M, Kuriwaka M. Current concepts in tissue engineering technique for repair of cartilage defect. Artif Organs. 2001;25(3):172–9.

    Article  PubMed  CAS  Google Scholar 

  13. Pabbruwe MB, Esfandiari E, Kafienah W, Tarlton JF, Hollander AP. Induction of cartilage integration by a chondrocyte/collagen-scaffold implant. Biomaterials. 2009;30(26):4277–86. Epub 2009 Jun 17.

    Article  PubMed  CAS  Google Scholar 

  14. Getgood A, Brooks R, Fortier L, Rushton N. Articular cartilage tissue engineering: today’s research, tomorrow’s practice? J Bone Joint Surg Br. 2009;91(5):565–76.

    PubMed  CAS  Google Scholar 

  15. Mano JF, Reis RL. Osteochondral defects: present situation and tissue engineering approaches. J Tissue Eng Regen Med. 2007;1(4):261–73.

    Article  PubMed  CAS  Google Scholar 

  16. Bernhardt A, Lode A, Boxberger S, Pompe W, Gelinsky M. Mineralised collagen – an artificial, extracellular bone matrix – improves osteogenic differentiation of bone marrow stromal cells. J Mater Sci Mater Med. 2008;19(1):269–75. Epub 2007 Jun 28.

    Article  PubMed  CAS  Google Scholar 

  17. Mastrogiacomo M, Muraglia A, Komlev V, Peyrin F, Rustichelli F, Crovace A, Cancedda R. Tissue engineering of bone: search for a better scaffold. Orthod Craniofac Res. 2005;8(4):277–84.

    Article  PubMed  CAS  Google Scholar 

  18. Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng. 2007;13(5):947–55.

    Article  PubMed  CAS  Google Scholar 

  19. Keeney M, et al. The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds. Tissue Eng Part B Rev. 2009;15(1):55–73.

    Article  PubMed  CAS  Google Scholar 

  20. Martin I, Miot S, Barbero A, Jakob M, Wendt D. Osteochondral tissue engineering. J Biomech. 2007;40(4):750–65. Epub 2006 May 26.

    Article  PubMed  Google Scholar 

  21. Tampieri A, Celotti G, Landi E, Sandri M, Roveri N, Falini G. Biologically inspired synthesis of bone-like composite: self-assembled collagen fibers/hydroxyapatite nanocrystals. J Biomed Mater Res A. 2003;67(2):618–25.

    Article  PubMed  Google Scholar 

  22. Jiang J, Tang A, Ateshian GA, Guo XE, Hung CT, Lu HH. Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng. 2010;38(6):2183–96. Epub 2010 Apr 22.

    Article  PubMed  Google Scholar 

  23. Im GI, Ahn JH, Kim SY, Choi BS, Lee SW. A hyaluronate-atelocollagen/beta-tricalcium phosphate-hydroxyapatite biphasic scaffold for the repair of osteochondral defects: a porcine study. Tissue Eng Part A. 2010;16(4):1189–200.

    Article  PubMed  CAS  Google Scholar 

  24. International Cartilage Repair Society. Cartilage injury evaluation package, 2000. Available at: http://www.cartilage.org/_files/contentmanagement/ICRS_evaluation.pdf. Accessed on 2013 July 22.

  25. Redman SN, Oldfield SF, Archer CW. Current strategies for articular cartilage repair. Eur Cell Mater. 2005;9:23–32.

    PubMed  CAS  Google Scholar 

  26. Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet. 2010;376:440–8.

    Article  PubMed  CAS  Google Scholar 

  27. Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo (poly (ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A. 2005;75(1):156–67.

    PubMed  Google Scholar 

  28. Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release. 2009;134(2):81–90.

    Article  PubMed  CAS  Google Scholar 

  29. Dormer NH, Singh M, Zhao L, Mohan N, Berkland CJ, Detamore MS. Osteochondral interface regeneration of the rabbit knee with macroscopic gradients of bioactive signals. J Biomed Mater Res A. 2012;100(1):162–70. doi:10.1002/jbm.a.33225. Epub 2011 Oct 19.

    PubMed  Google Scholar 

  30. Williams RJ, Gamradt SC. Articular cartilage repair using a resorbable matrix scaffold. Instr Course Lect. 2008;57:563–71.

    PubMed  Google Scholar 

  31. Melton JT, Wilson AJ, Chapman-Sheath P, Cossey AJ. TruFit CB® bone plug: chondral repair, scaffold design, surgical technique and early experiences. Expert Rev Med Devices. 2010;7(3):333–41.

    Article  PubMed  CAS  Google Scholar 

  32. Carmont MR, Carey-Smith R, Saithna A, Dhillon M, Thompson P, Spalding T. Delayed incorporation of a TruFit plug: perseverance is recommended. Arthroscopy. 2009;25(7):810–4.

    Article  PubMed  Google Scholar 

  33. Bedi A, et al. The maturation of synthetic scaffolds for osteochondral donor sites of the knee: an MRI and T2-mapping analysis. Cartilage. 2010;1(1):20–8.

    Article  Google Scholar 

  34. Barber FA, et al. A computed tomography scan assessment of synthetic multiphase polymer scaffolds used for osteochondral defect repair. Arthroscopy. 2011;27(1):60–4. Epub 2010 Oct 16.

    Article  PubMed  Google Scholar 

  35. Dhollander AA, Liekens K, Almqvist KF, Verdonk R, Lambrecht S, Elewault D, Verbruggen G, Verdonk PC. A pilot study of the use of an osteochondral scaffold plug for cartilage repair in the knee and how to deal with early clinical failures. Arthroscopy. 2012;28(2):225–33. Epub 2011 Oct 20.

    Article  PubMed  Google Scholar 

  36. Kon E, Delcogliano M, Filardo G, Fini M, Giavaresi G, Francioli S, Martin I, Pressato D, Arcangeli E, Quarto R, Sandri M, Marcacci M. Orderly ostechondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res. 2010;28(1):116–24.

    PubMed  Google Scholar 

  37. Kon E, Delcogliano M, Filardo G, Pressato D, Busacca M, Grigolo B, Desando G, Marcacci M. A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury. 2010;41:693–701.

    Article  PubMed  CAS  Google Scholar 

  38. Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M. Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med. XX(X):1–11.

    Google Scholar 

  39. Kon E, Delcogliano M, Filardo G, Altadonna G, Marcacci M. Novel nano-composite multi-layered biomaterial for the treatment of multifocal degenerative cartilage lesions. Knee Surg Sports Traumatol Arthrosc. 2009;17(11):1312–5. Epub 2009 May 26.

    Article  PubMed  Google Scholar 

  40. Detailed information about the multicenter clinical trial “Study for the Treatment of Knee Chondral and Osteochondral Lesions” available at: http://clinicaltrials.gov/ct2/show/NCT01282034. Accessed on 2013 July 22.

  41. Bock N, Riminucci A, Dionigi C, Russo A, Tampieri A, Landi E, Goranov VA, Marcacci M, Dediu V. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 2010;6(3):786–96.

    Article  PubMed  CAS  Google Scholar 

  42. Tampieri A, Landi E, Valentini F, Sandri M, D’Alessandro T, Dediu V, Marcacci M. A conceptually new type of biohybrid scaffold for bone regeneration. Nanotechnology. 2011;22(1):015104.

    Article  PubMed  CAS  Google Scholar 

  43. Natesan S, Baer DG, Walters TJ, Babu M, Christy RJ. Adipose-derived stem cell delivery into collagen gels using chitosan microspheres. Tissue Eng Part A. 2010;16(4):1369–84.

    Article  PubMed  CAS  Google Scholar 

  44. Kurth T, Hedbom E, Shintani N, Sugimoto M, Chen FH, Haspl M, Martinovic S, Hunziker EB. Chondrogenic potential of human synovial mesenchymal stem cells in alginate. Osteoarthritis Cartilage. 2007;15(10):1178–89.

    Article  PubMed  CAS  Google Scholar 

  45. Iwasa J, Engebretsen L, Shima Y, Ochi M. Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc. 2009;17(6):561–77.

    Article  PubMed  Google Scholar 

  46. Erisken C, Kalyon D, Wang H, Ornek C, Xu J. Osteochondral tissue formation through adipose-derived stromal cell differentiation on biomimetic polycaprolactone nanofibrous scaffolds with graded insulin and beta-glycerol phosphate concentrations. Tissue Eng Part A. 2011;17(9–10):1239–52.

    Article  PubMed  CAS  Google Scholar 

  47. Gao J, Yao JQ, Caplan AI. Stem cells for tissue engineering of articular cartilage. Proc Inst Mech Eng H. 2007;221(5):441–50.

    Article  PubMed  CAS  Google Scholar 

  48. Hao W, Dong J, Jiang M, Wu J, Cui F, Zhou D. Enhanced bone formation in large segmental radial defects by combining adipose-derived stem cells expressing bone morphogenetic protein 2 with nHA/RHLC/PLA scaffold. Int Orthop. 2010;34(8):1341–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizaveta Kon MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Kon, E., Perdisa, F., Filardo, G., Andriolo, L., Tentoni, F., Marcacci, M. (2014). Biomaterials for Osteochondral Reconstruction. In: Emans, P., Peterson, L. (eds) Developing Insights in Cartilage Repair. Springer, London. https://doi.org/10.1007/978-1-4471-5385-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5385-6_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5384-9

  • Online ISBN: 978-1-4471-5385-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics