Skip to main content

Molecular Basis of Arrhythmias Associated with the Cardiac Conduction System

  • Chapter
  • First Online:

Abstract

The cardiac conduction system is responsible for the initiation and coordination of the heartbeat. It consists of three central components: the sinus node, the atrioventricular node, and the His-Purkinje system. Since the discovery of the sinus node in 1907, the cardiac conduction system has been a topic of immense interest to basic science and clinical researchers investigating the function/dysfunction of the heart. In the last 10 years, our understanding of the system has been immensely enriched. We now know that the system has specialized (different from that in the working myocardium) expression profile of ion channels, intracellular Ca2+-handling proteins, and gap junction channels that are appropriate for its functioning, although there is continued debate concerning the ionic mechanisms underlying pacemaking. We are beginning to understand the mechanisms responsible for cardiac conduction system dysfunction in disease and appreciate how naturally occurring ion channel mutations cause congenital cardiac conduction system dysfunction. In this chapter we present the molecular basis of arrhythmias associated with the cardiac conduction system, with particular emphasis on recent developments in the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Keith A, Flack M. The form and nature of the muscular connections between the primary divisions of the vertebrate heart. J Anat Physiol. 1907;41:172–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Dobrzynski H, Boyett MR, Anderson RH. New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation. 2007;115:1921–32.

    PubMed  Google Scholar 

  3. Wiese C, Grieskamp T, Airik R, Mommersteeg MT, Gardiwal A, de Gier-de VC, et al. Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res. 2009;104:388–97.

    CAS  PubMed  Google Scholar 

  4. Chandler N, Aslanidi O, Buckley D, Inada S, Birchall S, Atkinson A, et al. Computer three-dimensional anatomical reconstruction of the human sinus node and a novel paranodal area. Anat Rec (Hoboken). 2011;294:970–9.

    Google Scholar 

  5. James TN, Sherf L, Fine G, Morales AR. Comparative ultrastructure of the sinus node in man and dog. Circulation. 1966;34:139–63.

    CAS  PubMed  Google Scholar 

  6. Taylor JJ, D’Agrosa LS, Burns EM. The pacemaker cell of the sinoatrial node of the rabbit. Am J Physiol. 1978;235:H407–12.

    CAS  PubMed  Google Scholar 

  7. Bleeker WK, Mackaay AJ, Masson-Pévet M, Bouman LN, Becker AE. Functional and morphological organization of the rabbit sinus node. Circ Res. 1980;46:11–22.

    CAS  PubMed  Google Scholar 

  8. Opthof T, de Jonge B, Mackaay AJ, Bleeker WK, Masson-Pevet M, Jongsma HJ, et al. Functional and morphological organization of the guinea-pig sinoatrial node compared with the rabbit sinoatrial node. J Mol Cell Cardiol. 1985;17:549–64.

    CAS  PubMed  Google Scholar 

  9. Boyett MR, Honjo H, Kodama I. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res. 2000;47:658–87.

    CAS  PubMed  Google Scholar 

  10. Christoffels VM, Smits GJ, Kispert A, Moorman AFM. Development of the pacemaker tissues of the heart. Circ Res. 2010;106:240–54.

    CAS  PubMed  Google Scholar 

  11. Tellez JO, Dobrzynski H, Greener ID, Graham GM, Laing E, Honjo H, et al. Differential expression of ion channel transcripts in atrial muscle and sinoatrial node in rabbit. Circ Res. 2006;99:1384–93.

    CAS  PubMed  Google Scholar 

  12. Chandler NJ, Greener ID, Tellez JO, Inada S, Musa H, Molenaar P, et al. Molecular architecture of the human sinus node – insights into the function of the cardiac pacemaker. Circulation. 2009;119:1562–75.

    PubMed  Google Scholar 

  13. Sanchez-Quintana D, Cabera JA, Farre J, Climent V, Anderson RH, Ho SY. Sinus node revisited in the era of electroanatomical mapping and catheter ablation. Heart. 2005;91:189–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Liu J, Dobrzynski H, Yanni J, Boyett MR, Lei M. Organisation of the mouse sinoatrial node: structure and expression of HCN channels. Cardiovasc Res. 2007;73:729–38.

    CAS  PubMed  Google Scholar 

  15. Boyett MR, Inada S, Yoo S, Li J, Liu J, Tellez J, et al. Connexins in the sinoatrial and atrioventricular nodes. Adv Cardiol. 2006;42:175–97.

    CAS  PubMed  Google Scholar 

  16. Bromberg BI, Hand DE, Schuessler RB, Boineau JP. Primary negativity does not predict dominant pacemaker location: implications for sinoatrial conduction. Am J Physiol. 1995;269:H877–87.

    CAS  PubMed  Google Scholar 

  17. Fedorov VV, Schuessler RB, Hemphill M, Ambrosi CM, Chang R, Voloshina AS, et al. Structural and functional evidence for discrete exit pathways that connect the canine sinoatrial node and atria. Circ Res. 2009;104:915–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Fedorov VV, Glukhov AV, Chang R. Conduction barriers and pathways of the sino-atrial pacemaker complex: their role in normal rhythm and atrial arrhythmias. Am J Physiol. 2012;302:H1773–83.

    CAS  Google Scholar 

  19. Irisawa H, Brown HF, Giles W. Cardiac pacemaking in the sino-atrial node. Physiol Rev. 1993;73:197–227.

    CAS  PubMed  Google Scholar 

  20. Mangoni ME, Nargeot J. Genesis and regulation of the heart automaticity. Physiol Rev. 2008;88:919–82.

    CAS  PubMed  Google Scholar 

  21. Noma A, Nakayama T, Kurachi Y, Irisawa H. Resting K conductances in pacemaker and non-pacemaker heart cells of the rabbit. Jpn J Physiol. 1984;34:245–54.

    CAS  PubMed  Google Scholar 

  22. Maltsev VA, Lakatta EG. Dynamic interactions of an intracellular Ca2+ clock and membrane ion channel clock underlie robust initiation and regulation of cardiac pacemaker function. Cardiovasc Res. 2008;77:274–84.

    CAS  PubMed  Google Scholar 

  23. Maltsev VA, Lakatta EG. Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model. Am J Physiol. 2009;296:H594–615.

    CAS  Google Scholar 

  24. Gao Z, Chen B, Joiner ML, Wu Y, Guan X, Koval OM, et al. If and SR Ca2+ release both contribute to pacemaker activity in canine sinoatrial node cells. J Mol Cell Cardiol. 2010;49:33–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res. 2010;106:659–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Dudel J, Trautwein W. The mechanism of formation of automatic rhythmical impulses in heart muscle. Pflugers Arch. 1958;267:553–65.

    CAS  PubMed  Google Scholar 

  27. Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 1976;260:799–802.

    CAS  PubMed  Google Scholar 

  28. Taniguchi J, Kokubun S, Noma A, Irisawa H. Spontaneously active cells isolated from the sino-atrial and atrio-ventricular nodes of the rabbit heart. Jpn J Physiol. 1981;31:547–58.

    CAS  PubMed  Google Scholar 

  29. Maylie J, Morad M, Weiss J. A study of pace-maker potential in rabbit sino-atrial node: measurement of potassium activity under voltage-clamp conditions. J Physiol. 1981;311:161–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Difrancesco D. The contribution of the ‘pacemaker’ current (if) to generation of spontaneous activity in rabbit sino-atrial node myocytes. J Physiol. 1991;434:23–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Guo J, Ono K, Noma A. A sustained inward current activated at the diastolic potential range in rabbit sino-atrial node cells. J Physiol. 1995;483:1–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Yanagihara K, Noma A, Irisawa H. Reconstruction of sino-atrial node pacemaker potential based on the voltage clamp experiments. Jpn J Physiol. 1980;30:841–57.

    CAS  PubMed  Google Scholar 

  33. Nilius B. Possible functional significance of a novel type of cardiac Ca channel. Biomed Biochim Acta. 1986;45:K37–45.

    CAS  PubMed  Google Scholar 

  34. Huang ZM, Prasad C, Britton FC, Ye LL, Hatton WJ, Duan D. Functional role of CLC-2 chloride inward rectifier channels in cardiac sinoatrial nodal pacemaker cells. J Mol Cell Cardiol. 2009;47:121–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Demion M, Bois P, Launay P, Guinamard R. TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells. Cardiovasc Res. 2007;73:531–8.

    CAS  PubMed  Google Scholar 

  36. Lalevee N, Monier B, Senatore S, Perrin L, Semeriva M. Control of cardiac rhythm by ORK1, a Drosophila two-pore domain potassium channel. Curr Biol. 2006;16:1502–8.

    CAS  PubMed  Google Scholar 

  37. Froese A, Breher SS, Waldeyer C, Schindler RF, Nikolaev VO, Rinné S, et al. Popeye domain containing proteins are essential for stress-mediated modulation of cardiac pacemaking in mice. J Clin Invest. 2012;122:1119–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Tellez J, Maczewski M, Yanni J, Sutyagin P, Mackiewicz U, Atkinson A, et al. Ageing-dependent remodelling of ion channel and Ca2+ clock genes underlying sinoatrial node pacemaking. Exp Physiol. 2011;96:1163–78.

    CAS  PubMed  Google Scholar 

  39. Difrancesco D. The role of the funny current in pacemaker activity. Circ Res. 2010;106:434–46.

    CAS  PubMed  Google Scholar 

  40. Milanesi R, Baruscotti M, Gnecchi-Ruscone T, DiFrancesco D. Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. N Engl J Med. 2006;354:151–7.

    CAS  PubMed  Google Scholar 

  41. Baruscotti M, Bucchi A, Viscomi C, Mandelli G, Consalez G, Gnecchi-Rusconi T, et al. Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4. Proc Natl Acad Sci USA. 2011;108:1705–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Fox K, Ford I, Steg PG, Tendera M, Ferrari R. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:807–16.

    CAS  PubMed  Google Scholar 

  43. Rigg L, Terrar DA. Possible role of calcium release from the sarcoplasmic reticulum in pacemaking in guinea-pig sino-atrial node. Exp Physiol. 1996;81:877–80.

    CAS  PubMed  Google Scholar 

  44. Huser J, Blatter LA, Lipsius SL. Intracellular Ca2+ release contributes to automaticity in cat atrial pacemaker cells. J Physiol. 2000;524:415–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Bogdanov KY, Vinogradova TM, Lakatta EG. Sinoatrial nodal cell ryanodine receptor and Na+-Ca2+ exchanger: molecular partners in pacemaker regulation. Circ Res. 2001;88:1254–8.

    CAS  PubMed  Google Scholar 

  46. Vinogradova TM, Bogdanov KY, Lakatta EG. Novel perspectives on the beating rate of the heart. Circ Res. 2002;91:e3.

    PubMed  Google Scholar 

  47. Vinogradova TM, Zhou YY, Maltsev V, Lyashkov A, Stern M, Lakatta EG. Rhythmic ryanodine receptor Ca2+ releases during diastolic depolarization of sinoatrial pacemaker cells do not require membrane depolarization. Circ Res. 2004;94:802–9.

    CAS  PubMed  Google Scholar 

  48. Sanders L, Rakovic S, Lowe M, Mattick PA, Terrar DA. Fundamental importance of Na+-Ca2+ exchange for the pacemaking mechanism in guinea-pig sino-atrial node. J Physiol. 2006;571:639–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Lakatta EG, Vinogradova TM, Maltsev VA. The missing link in the mystery of normal automaticity of cardiac pacemaker cells. Ann NY Acad Sci. 2008;1123:41–57.

    CAS  PubMed  Google Scholar 

  50. Li J, Qu J, Nathan RD. Ionic basis of ryanodine’s negative chronotropic effect on pacemaker cells isolated from the sinoatrial node. Am J Physiol. 1997;273:H2481–9.

    CAS  PubMed  Google Scholar 

  51. Postma AV, Denjoy I, Hoorntje TM, Lupoglazoff JM, Da Costa A, Sebillon P, et al. Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. Circ Res. 2002;91:e21–6.

    CAS  PubMed  Google Scholar 

  52. Postma AV, Denjoy I, Kamblock J, Alders M, Lupoglazoff JM, Vaksmann G, et al. Catecholaminergic polymorphic ventricular tachycardia: RYR2 mutations, bradycardia, and follow up of the patients. J Med Genet. 2005;42:863–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Bhuiyan ZA, Van den Berg MP, Van Tintelen JP, Bink-Boelkens MT, Wiesfeld AC, Alders M, et al. Expanding spectrum of human RYR2-related disease: new electrocardiographic, structural, and genetic features. Circulation. 2007;116:1569–76.

    PubMed  Google Scholar 

  54. Lakatta EG, DiFrancesco D. What keeps us ticking: a funny current, a calcium clock, or both? J Mol Cell Cardiol. 2009;47:157–70.

    CAS  PubMed  Google Scholar 

  55. Boyett MR, Honjo H, Yamamoto M, Nikmaram MR, Niwa R, Kodama I. Downward gradient in action potential duration along the conduction path in and around the sinoatrial node. Am J Physiol. 1999;276:H686–98.

    CAS  PubMed  Google Scholar 

  56. Greener ID, Monfredi O, Inada S, Chandler NJ, Tellez JO, Atkinson A, et al. Molecular architecture of the human specialised atrioventricular conduction axis. J Mol Cell Cardiol. 2011;50:642–51.

    CAS  PubMed  Google Scholar 

  57. Lei M, Jones SA, Liu J, Lancaster MK, Fung SS, Dobrzynski H, et al. Requirement of neuronal- and cardiac-type sodium channels for murine sinoatrial node pacemaking. J Physiol. 2004;559:835–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Boyett MR, Tellez JO, Dobrzynski H. The sinoatrial node – its complex structure and unique ion channel gene programme. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. 5th ed. Philadelphia: WB Saunders Company/Elsevier Science; 2009. p. 127–38.

    Google Scholar 

  59. Joyner RW, van Capelle FJL. Propagation through electrically coupled cells: how a small SA node drives a large atrium. Biophys J. 1986;50:1157–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Sano T, Yamagishi S. Spread of excitation from the sinus node. Circ Res. 1965;16:423–30.

    CAS  PubMed  Google Scholar 

  61. Coppen SR, Severs NJ. Diversity of connexin expression patterns in the atrioventricular node: vestigial consequence or functional specialization? J Cardiovasc Electrophysiol. 2002;13:625–6.

    PubMed  Google Scholar 

  62. Benditt DG, Sakaguchi S, Goldstein MA. Sinus node dysfunction: pathophysiology, clinical features, evaluation, and treatment. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. 2nd ed. Philadelphia: WB Saunders Company; 1995. p. 1215–47.

    Google Scholar 

  63. Park DS, Fishman GI. The cardiac conduction system. Circulation. 2011;123:904–15.

    PubMed Central  PubMed  Google Scholar 

  64. Alings AMW, Bouman LN. Electrophysiology of the ageing rabbit and cat sinoatrial node - a comparative study. Eur Heart J. 1993;14:1278–88.

    CAS  PubMed  Google Scholar 

  65. Lamas GA, Pashos CL, Normand SL, McNeil B. Permanent pacemaker selection and subsequent survival in elderly Medicare pacemaker recipients. Circulation. 1995;91:1063–9.

    CAS  PubMed  Google Scholar 

  66. Elvan A, Wylie K, Zipes DP. Pacing-induced chronic atrial fibrillation impairs sinus node function in dogs. Electrophysiological remodeling. Circulation. 1996;94:2953–60.

    CAS  PubMed  Google Scholar 

  67. Yeh YH, Burstein B, Qi XY, Sakabe M, Chartier D, Comtois P, et al. Funny current downregulation and sinus node dysfunction associated with atrial tachyarrhythmia: a molecular basis for tachycardia-bradycardia syndrome. Circulation. 2009;119:1576–85.

    PubMed  Google Scholar 

  68. Opthof T, Coronel R, Rademaker HM, Vermeulen JT, Wilms-Schopman FJ, Janse MJ. Changes in sinus node function in a rabbit model of heart failure with ventricular arrhythmias and sudden death. Circulation. 2000;101:2975–80.

    CAS  PubMed  Google Scholar 

  69. Sanders P, Kistler PM, Morton JB, Spence SJ, Kalman JM. Remodeling of sinus node function in patients with congestive heart failure: reduction in sinus node reserve. Circulation. 2004;110:897–903.

    PubMed  Google Scholar 

  70. Zicha S, Fernández-Velasco M, Lonardo G, L’Heureux N, Nattel S. Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model. Cardiovasc Res. 2005;66:472–81.

    CAS  PubMed  Google Scholar 

  71. Yanni JF, Yamanushi TT, Dobrzynski H, Boyett MR. Remodelling of the extracellular matrix in the rat sinoatrial node in congestive heart failure. Proc Physiol Soc. 2009;15:C26.

    Google Scholar 

  72. de Melo SR, de Souza RR, Mandarim-de-Lacerda CA. Stereologic study of the sinoatrial node of rats - age related changes. Biogerontology. 2002;3:383–90.

    PubMed  Google Scholar 

  73. Adan V, Crown LA. Diagnosis and treatment of sick sinus syndrome. Am Fam Physician. 2003;67:1725–32.

    PubMed  Google Scholar 

  74. Hao X, Zhang Y, Zhang X, Nirmalan M, Davies L, Konstantinou D, et al. TGF-β1-mediated fibrosis and ion channel remodeling are key mechanisms in producing the sinus node dysfunction associated with SCN5A deficiency and aging. Circ Arrhythm Electrophysiol. 2011;4:397–406.

    CAS  PubMed  Google Scholar 

  75. Swaminathan PD, Purohit A, Soni S, Voigt N, Singh MV, Glukhov AV, et al. Oxidized CaMKII causes cardiac sinus node dysfunction in mice. J Clin Invest. 2011;121:3277–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Ailings AMW, Abbas RF, Bouman LN. Age-related changes in structure and relative collagen content of the human and feline sinoatrial node. A comparative study. Eur Heart J. 1995;16:1655–67.

    Google Scholar 

  77. Yanni J, Tellez JO, Sutyagin PV, Boyett MR, Dobrzynski H. Structural remodelling of the sinoatrial node in obese old rats. J Mol Cell Cardiol. 2010;48:653–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Verkerk AO, Wilders R, Coronel R, Ravesloot JH, Verheijck EE. Ionic remodeling of sinoatrial node cells by heart failure. Circulation. 2003;108:760–6.

    PubMed  Google Scholar 

  79. Jones SA, Lancaster MK, Boyett MR. Ageing-related changes of connexins and conduction within the sinoatrial node. J Physiol. 2004;560:429–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Jones SA, Boyett MR, Lancaster MK. Declining into failure: the age-dependent loss of the L-type calcium channel within the sinoatrial node. Circulation. 2007;115:1183–90.

    CAS  PubMed  Google Scholar 

  81. Joung B, Lin SF, Chen Z, Antoun PS, Maruyama M, Han S, et al. Mechanisms of sinoatrial node dysfunction in a canine model of pacing-induced atrial fibrillation. Heart Rhythm. 2010;7:88–95.

    PubMed Central  PubMed  Google Scholar 

  82. Yamanushi TT, Yanni J, Dobrzynski H, Kabuto H, Boyett MR. Changes in ion channel expression in right-sided congestive heart failure. J Mol Cell Cardiol. 2010;48:S73.

    Google Scholar 

  83. Yanni J, Cai XJ, Yamanushi T, Tellez JO, Jones C, Hutcheon R, et al. Two pathways to sinoatrial node dysfunction in heart failure. Proc Physiol Soc. 2011;23:PC162.

    Google Scholar 

  84. van Veen TA, Stein M, Royer A, Le Quang K, Charpentier F, Colledge WH, et al. Impaired impulse propagation in Scn5a-knockout mice: combined contribution of excitability, connexin expression, and tissue architecture in relation to aging. Circulation. 2005;112:1927–35.

    PubMed  Google Scholar 

  85. Shang LL, Sanyal S, Pfahnl AE, Jiao Z, Allen J, Liu H, et al. NF-kappaB-dependent transcriptional regulation of the cardiac scn5a sodium channel by angiotensin II. Am J Physiol. 2008;294:C372–9.

    CAS  Google Scholar 

  86. Li J, Greener ID, Inada S, Nikolski VP, Yamamoto M, Hancox JC, et al. Computer three-dimensional reconstruction of the atrioventricular node. Circ Res. 2008;102:975–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Anderson RH, Yanni J, Boyett MR, Chandler NJ, Dobrzynski H. The anatomy of the cardiac conduction system. Clin Anat. 2009;22:99–113.

    PubMed  Google Scholar 

  88. Greener ID, Tellez JO, Dobrzynski H, Yamamoto M, Graham GM, Billeter R, et al. Ion channel transcript expression at the rabbit atrioventricular conduction axis. Circ Arrhythm Electrophysiol. 2009;2:305–15.

    CAS  PubMed  Google Scholar 

  89. Moe GK, Preston JB, Burlington H. Physiologic evidence for a dual A-V transmission system. Circ Res. 1956;4:357–75.

    CAS  PubMed  Google Scholar 

  90. Spach MS, Lieberman M, Scott JG, Barr RC, Johnson EA, Kootsey JM. Excitation sequences of the atrial septum and the AV node in isolated hearts of the dog and rabbit. Circ Res. 1971;29:156–72.

    CAS  PubMed  Google Scholar 

  91. Meijler FL, Janse MJ. Morphology and electrophysiology of the mammalian atrioventricular node. Physiol Rev. 1988;68:608–47.

    CAS  PubMed  Google Scholar 

  92. Anderson RH, Ho SY. The morphology of the cardiac conduction system. Novartis Found Symp. 2003;250:6–17; discussion 18–24, 276–9.

    PubMed  Google Scholar 

  93. Inoue S, Becker AE. Posterior extensions of the human compact atrioventricular node: a neglected anatomic feature of potential clinical significance. Circulation. 1998;97:188–93.

    CAS  PubMed  Google Scholar 

  94. Hucker WJ, McCain ML, Laughner JI, Iaizzo PA, Efimov IR. Connexin 43 expression delineates two discrete pathways in the human atrioventricular junction. Anat Rec. 2008;291:204–15.

    Google Scholar 

  95. Tawara S. The conduction system of the mammalian heart: an anatomico-histological study of the atrioventricular bundle and the Purkinje fibers. London: Imperial College Press; 2000.

    Google Scholar 

  96. Dobrzynski H, Nikolski VP, Sambelashvili AT, Greener ID, Yamamoto M, Boyett MR, et al. Site of origin and molecular substrate of atrioventricular junctional rhythm in the rabbit heart. Circ Res. 2003;93:1102–10.

    CAS  PubMed  Google Scholar 

  97. deCarvalho AP, De Mello WC, Hoffman BF. Electrophysiological evidence for specialized fiber types in rabbit atrium. Am J Physiol. 1959;196:483–8.

    CAS  Google Scholar 

  98. Zipes DP, Mendez C. Action of manganese ions and tetrodotoxin on atrioventricular nodal transmembrane potentials in isolated rabbit hearts. Circ Res. 1973;32:447–54.

    CAS  PubMed  Google Scholar 

  99. Anderson RH, Davies MJ, Becker AE. Atrioventricular ring specialized tissue in the normal heart. Eur J Cardiol. 1974;2:219–30.

    Google Scholar 

  100. Billette J. Atrioventricular nodal activation during periodic premature stimulation of the atrium. Am J Physiol. 1987;252:H163–77.

    CAS  PubMed  Google Scholar 

  101. Munk AA, Adjemian RA, Zhao J, Ogbaghebriel A, Shrier A. Electrophysiological properties of morphologically distinct cells isolated from the rabbit atrioventricular node. J Physiol. 1996;493:801–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Patterson E, Scherlag BJ. Anatomic and functional fast atrioventricular conduction pathway. J Cardiovasc Electrophysiol. 2002;13:945–9.

    PubMed  Google Scholar 

  103. Ren FX, Niu XL, Ou Y, Han ZH, Ling FD, Zhou SS, et al. Morphological and electrophysiological properties of single myocardial cells from Koch triangle of rabbit heart. Chin Med J (Engl). 2006;119:2075–84.

    Google Scholar 

  104. Inada S, Hancox JC, Zhang H, Boyett MR. One-dimensional mathematical model of the atrioventricular node including atrio-nodal, nodal, and nodal-his cells. Biophys J. 2009;97:2117–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Hancox JC, Yuill KH, Mitcheson JS, Convery MK. Progress and gaps in understanding the electrophysiological properties of morphologically normal cells from the cardiac atrioventricular node. Int J Bifurcation Chaos. 2003;13:3675–91.

    Google Scholar 

  106. Yoo S, Dobrzynski H, Fedorov VV, Xu SZ, Yamanushi TT, Jones SA, et al. Localization of Na+ channel isoforms at the atrioventricular junction and atrioventricular node in the rat. Circulation. 2006;114:1360–71.

    CAS  PubMed  Google Scholar 

  107. Cheng H, Smith GL, Hancox JC, Orchard CH. Inhibition of spontaneous activity of rabbit atrioventricular node cells by KB-R7943 and inhibitors of sarcoplasmic reticulum Ca2+ ATPase. Cell Calcium. 2011;49:56–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Nikmaram MR, Liu J, Abdelrahman M, Dobrzynski H, Boyett MR, Lei M. Characterization of the effects of ryanodine, TTX, E-4031 and 4-AP on the sinoatrial and atrioventricular nodes. Prog Biophys Mol Biol. 2008;96:452–64.

    CAS  PubMed  Google Scholar 

  109. Hancox JC, Levi AJ. L-type calcium current in rod- and spindle-shaped myocytes isolated from rabbit atrioventricular node. Am J Physiol. 1994;267:H1670–80.

    CAS  PubMed  Google Scholar 

  110. Mangoni ME, Traboulsie A, Leoni AL, Couette B, Marger L, Le Quang K, et al. Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circ Res. 2006;98:1422–30.

    CAS  PubMed  Google Scholar 

  111. Papadatos GA, Wallerstein PM, Head CE, Ratcliff R, Brady PA, Benndorf K, et al. Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a. ProcNatlAcadSci USA. 2002;99:6210–5.

    CAS  Google Scholar 

  112. Schott JJ, Alshinawi C, Kyndt F, Probst V, Hoorntje TM, Hulsbeek M, et al. Cardiac conduction defects associate with mutations in SCN5A. Nat Genet. 1999;23:20–1.

    CAS  PubMed  Google Scholar 

  113. Watanabe H, Koopmann TT, Le Scouarnec S, Yang T, Ingram CR, Schott JJ, et al. Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest. 2008;118:2260–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Pollack GH. Intercellular coupling in the atrioventricular node and other tissues of the rabbit heart. J Physiol. 1976;255:275–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Coppen SR, Severs NJ, Gourdie RG. Connexin45 (alpha 6) expression delineates an extended conduction system in the embryonic and mature rodent heart. Dev Genet. 1999;24:82–90.

    CAS  PubMed  Google Scholar 

  116. Severs NJ, Rothery S, Dupont E, Coppen SR, Yeh HI, Ko YS, et al. Immunocytochemical analysis of connexin expression in the healthy and diseased cardiovascular system. Microsc Res Tech. 2001;52:301–22.

    CAS  PubMed  Google Scholar 

  117. Zhang Y, Bharati S, Mowrey KA, Zhuang S, Tchou PJ, Mazgalev TN. His electrogram alternans reveal dual-wavefront inputs into and longitudinal dissociation within the bundle of His. Circulation. 2001;104:832–8.

    CAS  PubMed  Google Scholar 

  118. McGuire MA, Bourke JP, Robotin MC, Johnson DC, Meldrum-Hanna W, Nunn GR, et al. High resolution mapping of Koch’s triangle using sixty electrodes in humans with atrioventricular junctional (AV nodal) reentrant tachycardia. Circulation. 1993;88:2315–28.

    CAS  PubMed  Google Scholar 

  119. Kurian T, Ambrosi C, Hucker W, Fedorov VV, Efimov IR. Anatomy and electrophysiology of the human AV node. Pacing Clin Electrophysiol. 2010;33:754–62.

    PubMed Central  PubMed  Google Scholar 

  120. Nikolski VP, Jones SA, Lancaster MK, Boyett MR, Efimov IR. Cx43 and dual-pathway electrophysiology of the atrioventricular node and atrioventricular nodal reentry. Circ Res. 2003;92:469–75.

    CAS  PubMed  Google Scholar 

  121. Hampton JR. The ECG, made easy. 6th ed. Edinburgh: Churchill Livingstone; 2003.

    Google Scholar 

  122. Crisel RK, Farzaneh-Far R, Na B, Whooley MA. First-degree atrioventricular block is associated with heart failure and death in persons with stable coronary artery disease: data from the Heart and Soul Study. Eur Heart J. 2011;32:1875–80.

    PubMed Central  PubMed  Google Scholar 

  123. Piccini JP, Calkins H. Arrhythmia management in the elderly. In: Gerstenblith G, editor. Cardiovascular disease in the elderly. Totowa: Humana Press; 2005. p. 261–300.

    Google Scholar 

  124. Maron BJ, Pelliccia A. The heart of trained athletes: cardiac remodelling and the risks of sports, including sudden death. Circulation. 2006;114:1633–44.

    PubMed  Google Scholar 

  125. Miquerol L, Meysen S, Mangoni M, Bois P, van Rijen HV, Abran P, et al. Architectural and functional asymmetry of the His-Purkinje system of the murine heart. Cardiovasc Res. 2004;63:77–86.

    CAS  PubMed  Google Scholar 

  126. Atkinson A, Inada S, Li J, Tellez JO, Yanni J, Sleiman RN, et al. Anatomical and molecular mapping of the left and right ventricular His-Purkinje networks. J Mol Cell Cardiol. 2011;51:689–701.

    CAS  PubMed  Google Scholar 

  127. Ansari A, Ho SY, Anderson RH. Distribution of the Purkinje fibres in the sheep heart. Anat Rec. 1999;254:92–7.

    CAS  PubMed  Google Scholar 

  128. Massing GK, James TN. Anatomical configuration of the His bundle and bundle branches in the human heart. Circulation. 1976;53:609–21.

    CAS  PubMed  Google Scholar 

  129. Tranum-Jensen J, Wilde AA, Vermeulen JT, Janse MJ. Morphology of electrophysiologically identified junctions between Purkinje fibers and ventricular muscle in rabbit and pig hearts. Circ Res. 1991;69:429–37.

    CAS  PubMed  Google Scholar 

  130. Ryu S, Yamamoto S, Andersen CR, Nakazawa K, Miyake F, James TN. Intramural Purkinje cell network of sheep ventricles as the terminal pathway of conduction system. Anat Rec. 2009;292:12–22.

    Google Scholar 

  131. Severs NJ. The cardiac muscle cell. Bioessays. 2000;2:188–99.

    Google Scholar 

  132. Desplantez T, Dupont E, Severs NJ, Weingart R. Gap junction channels and cardiac impulse propagation. J Membr Biol. 2007;18:13–28.

    Google Scholar 

  133. Di Maio A, TerKeurs HE, Franzini-Armstrong C. T-tubule profiles in Purkinje fibres of mammalian myocardium. J Muscle Res Cell Motil. 2007;28:115–21.

    PubMed  Google Scholar 

  134. Oosthoek PW, Virágh S, Lamers WH, Moorman AF. Immunohistochemical delineation of the conduction system. II: the atrioventricular node and Purkinje fibers. Circ Res. 1993;73:482–91.

    CAS  PubMed  Google Scholar 

  135. Gourdie RG, Severs NJ, Green CR, Rothery S, Germroth P, Thompson RP. The spatial distribution and relative abundance of gap-junctional connexin40 and connexin43 correlate to functional properties of components of the cardiac atrioventricular conduction system. J Cell Sci. 1993;105:985–91.

    CAS  PubMed  Google Scholar 

  136. Gaborit N, Le Bouter S, Szuts V, Varro A, Escande D, Nattel S, et al. Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol. 2007;582:675–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. van Rijen HV, van Veen TA, van Kempen MJ, Wilms-Schopman FJ, Potse M, Krueger O, et al. Impaired conduction in the bundle branches of mouse hearts lacking the gap junction protein connexin40. Circulation. 2001;103:1591–8.

    PubMed  Google Scholar 

  138. Anumonwo JM, Tallini YN, Vetter FJ, Jalife J. Action potential characteristics and arrhythmogenic properties of the cardiac conduction system of the murine heart. Circ Res. 2001;89:329–35.

    CAS  PubMed  Google Scholar 

  139. Persson F, Andersson B, Duker G, Jacobson I, Carlsson L. Functional effects of the late sodium current inhibition by AZD7009 and lidocaine in rabbit isolated atrial and ventricular tissue and Purkinje fibre. Eur J Pharmacol. 2007;558:133–43.

    CAS  PubMed  Google Scholar 

  140. Baláti B, Iost N, Simon J, Varró A, Papp JG. Analysis of the electrophysiological effects of ambasilide, a new antiarrhythmic agent, in canine isolated ventricular muscle and purkinje fibers. Gen Pharmacol. 2000;34:85–93.

    PubMed  Google Scholar 

  141. Koncz I, Szél T, Bitay M, Cerbai E, Jaeger K, Fülöp F, et al. Electrophysiological effects of ivabradine in dog and human cardiac preparations: potential antiarrhythmic actions. Eur J Pharmacol. 2011;668:419–26.

    CAS  PubMed  Google Scholar 

  142. Aslanidi OV, Sleiman RN, Boyett MR, Hancox JC, Zhang H. Ionic mechanisms for electrical heterogeneity between rabbit Purkinje fiber and ventricular cells. Biophys J. 2010;98:2420–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Roden DM, Hoffman BF. Action potential prolongation and induction of abnormal automaticity by low quinidine concentrations in canine Purkinje fibers. Relationship to potassium and cycle length. Circ Res. 1985;56:857–67.

    CAS  PubMed  Google Scholar 

  144. Nattel S, Quantz MA. Pharmacological response of quinidine induced early afterdepolarisations in canine cardiac Purkinje fibres: insights into underlying ionic mechanisms. Cardiovasc Res. 1988;22:808–17.

    CAS  PubMed  Google Scholar 

  145. Kaseda S, Gilmour Jr RF, Zipes DP. Depressant effect of magnesium on early afterdepolarizations and triggered activity induced by cesium, quinidine, and 4-aminopyridine in canine cardiac Purkinje fibers. Am Heart J. 1989;118:458–66.

    CAS  PubMed  Google Scholar 

  146. Boyden PA, Pu J, Pinto J, Keurs HE. Ca2+ transients and Ca2+ waves in purkinje cells: role in action potential initiation. Circ Res. 2000;86:448–55.

    CAS  PubMed  Google Scholar 

  147. Cordeiro JM, Bridge JH, Spitzer KW. Early and delayed afterdepolarizations in rabbit heart Purkinje cells viewed by confocal microscopy. Cell Calcium. 2001;29:289–97.

    CAS  PubMed  Google Scholar 

  148. Abi-Gerges N, Small BG, Lawrence CL, Hammond TG, Valentin JP, Pollard CE. Evidence for gender differences in electrophysiological properties of canine Purkinje fibres. Br J Pharmacol. 2004;142:1255–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Abi-Gerges N, Small BG, Lawrence CL, Hammond TG, Valentin JP, Pollard CE. Gender differences in the slow delayed (IKs) but not in inward (IK1) rectifier K+ currents of canine Purkinje fibre cardiac action potential: key roles for IKs, β-adrenoceptor stimulation, pacing rate and gender. Br J Pharmacol. 2006;147:653–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Weidmann S. Resting and action potentials of cardiac muscle. Ann NY Acad Sci. 1957;65:663–78.

    CAS  PubMed  Google Scholar 

  151. Davis LD, Temte JV. Electrophysiological actions of lidocaine on canine ventricular muscle and Purkinje fibers. Circ Res. 1969;24:639–55.

    CAS  PubMed  Google Scholar 

  152. Kus T, Sasyniuk BI. Electrophysiological actions of disopyramide phosphate on canine ventricular muscle and purkinje fibers. Circ Res. 1975;37:844–54.

    CAS  PubMed  Google Scholar 

  153. Callewaert G, Carmeliet E, Vereecke J. Single cardiac Purkinje cells: general electrophysiology and voltage-clamp analysis of the pace-maker current. J Physiol. 1984;349:643–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Yu H, Chang F, Cohen IS. Pacemaker current if in adult canine cardiac ventricular myocytes. J Physiol. 1995;485:469–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Schram G, Pourrier M, Melnyk P, Nattel S. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res. 2002;90:939–50.

    CAS  PubMed  Google Scholar 

  156. Vassalle M, Yu H, Cohen IS. The pacemaker current in cardiac Purkinje myocytes. J Gen Physiol. 1995;106:559–78.

    CAS  PubMed  Google Scholar 

  157. Rota M, Vassalle M. Patch-clamp analysis in canine cardiac Purkinje cells of a novel sodium component in the pacemaker range. J Physiol. 2003;548:147–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Vassalle M. The vicissitudes of the pacemaker current IKdd of cardiac purkinje fibers. Biomed Sci. 2007;14:699–716.

    CAS  Google Scholar 

  159. Boyett MR, Hart G, Levi AJ, Roberts A. Effects of repetitive activity on developed force and intracellular sodium in isolated sheep and dog Purkinje fibres. J Physiol. 1987;388:295–322.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Vassalle M. Electrogenic suppression of automaticity in sheep and dog purkinje fibers. Circ Res. 1970;27:361–77.

    CAS  PubMed  Google Scholar 

  161. Kline RP, Kupersmith J. Effects of extracellular potassium accumulation and sodium pump activation on automatic canine Purkinje fibres. J Physiol. 1982;324:507–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Boyett MR, Fedida D. Changes in the electrical activity of dog cardiac Purkinje fibres at high heart rates. J Physiol. 1984;350:361–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Boyden PA, Dun W, Barbhaiya C, TerKeurs HE. 2APB- and JTV519(K201)-sensitive micro Ca2+ waves in arrhythmogenic Purkinje cells that survive in infarcted canine heart. Heart Rhythm. 2004;1:218–26.

    PubMed  Google Scholar 

  164. Tsien RW, Kass RS, Weingart R. Cellular and subcellular mechanisms of cardiac pacemaker oscillations. J Exp Biol. 1979;81:205–15.

    CAS  PubMed  Google Scholar 

  165. Cordeiro JM, Spitzer KW, Giles WR. Repolarizing K+ currents in rabbit heart Purkinje cells. J Physiol. 1998;508:811–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Gadsby DC, Cranefield PF. Two levels of resting potential in cardiac Purkinje fibers. J Gen Physiol. 1977;70:725–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Boyden PA, Albala A, Dresdner Jr KP. Electrophysiology and ultrastructure of canine subendocardial Purkinje cells isolated from control and 24-hour infarcted hearts. Circ Res. 1989;65:955–70.

    CAS  PubMed  Google Scholar 

  168. Wiggins JR, Cranefield PF. Two levels of resting potential in canine cardiac Purkinje fibers exposed to sodium-free solutions. Circ Res. 1976;39:466–74.

    CAS  PubMed  Google Scholar 

  169. Molyvdas PA, Sperelakis N. Comparison of the effects of several calcium antagonistic drugs on the electrical activity of guinea pig Purkinje fibers. Eur J Pharmacol. 1983;88:205–14.

    CAS  PubMed  Google Scholar 

  170. Amerini S, Giotti A, Mugelli A. Effect of verapamil and diltiazem on calcium-dependent electrical activity in cardiac Purkinje fibres. Br J Pharmacol. 1985;85:89–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Wit AL, Cranefield PF, Hoffman BF. Slow conduction and reentry in the ventricular conducting system. II. Single and sustained circus movement in networks of canine and bovine Purkinje fibers. Circ Res. 1972;30:11–22.

    CAS  PubMed  Google Scholar 

  172. Scheinman MM. Role of the His-Purkinje system in the genesis of cardiac arrhythmia. Heart Rhythm. 2009;6:1050–8.

    PubMed  Google Scholar 

  173. Crijns HJ, Smeets JL, Rodriguez LM, Meijer A, Wellens HJ. Cure of interfascicular reentrant ventricular tachycardia by ablation of the anterior fascicle of the left bundle branch. J Cardiovasc Electrophysiol. 1995;6:486–92.

    CAS  PubMed  Google Scholar 

  174. Balasundaram R, Rao HB, Kalavakolanu S, Narasimhan C. Catheter ablation of bundle branch reentrant ventricular tachycardia. Heart Rhythm. 2008;5:S68–72.

    PubMed  Google Scholar 

  175. Wright M, Sacher F, Haïssaguerre M. Catheter ablation for patients with ventricular fibrillation. Curr Opin Cardiol. 2009;24:56–60.

    PubMed  Google Scholar 

  176. Grines CL, Bashore TM, Boudoulas H, Olson S, Shafer P, Wooley CF. Functional abnormalities in isolated left bundle branch block. The effect of interventricular asynchrony. Circulation. 1989;79:845–53.

    CAS  PubMed  Google Scholar 

  177. Eriksson P, Hansson PO, Eriksson H, Dellborg M. Bundle-branch block in a general male population: the study of men born 1913. Circulation. 1998;98:2494–500.

    CAS  PubMed  Google Scholar 

  178. Maddali M. Cardiac pacing in left bundle/bifascicular block patients. Ann Card Anaesth. 2010;13:7–15.

    PubMed  Google Scholar 

  179. Padeletti L, Valleggi A, Vergaro G, Lucà F, Rao CM, Perrotta L, et al. Concordant versus discordant left bundle branch block in heart failure patients: novel clinical value of an old electrocardiographic diagnosis. J Card Fail. 2010;16:320–6.

    PubMed  Google Scholar 

  180. Maguy A, Le Bouter S, Comtois P, Chartier D, Villeneuve L, Wakili R, et al. Ion channel subunit expression changes in cardiac Purkinje fibers: a potential role in conduction abnormalities associated with congestive heart failure. Circ Res. 2009;104:1113–22.

    CAS  PubMed  Google Scholar 

  181. Burstein B, Comtois P, Michael G, Nishida K, Villeneuve L, Yeh YH, et al. Changes in connexin expression and the atrial fibrillation substrate in congestive heart failure. Circ Res. 2009;105:1213–22.

    CAS  PubMed  Google Scholar 

  182. Han W, Chartier D, Li D, Nattel S. Ionic remodeling of cardiac Purkinje cells by congestive heart failure. Circulation. 2001;104:2095–3100.

    CAS  PubMed  Google Scholar 

  183. Han W, Bao W, Wang Z, Nattel S. Comparison of ion-channel subunit expression in canine cardiac Purkinje fibers and ventricular muscle. Circ Res. 2002;91:790–7.

    CAS  PubMed  Google Scholar 

  184. Berenfeld O, Jalife J. Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circ Res. 1998;82:1063–77.

    CAS  PubMed  Google Scholar 

  185. Gilmour Jr RF, Watanabe M. Dynamics of circus movement re-entry across canine Purkinje fibre-muscle junctions. J Physiol. 1994;476:473–85.

    PubMed Central  PubMed  Google Scholar 

  186. Li ZY, Wang YH, Maldonado C, Kupersmith J. Role of junctional zone cells between Purkinje fibres and ventricular muscle in arrhythmogenesis. Cardiovasc Res. 1994;28:1277–84.

    CAS  PubMed  Google Scholar 

  187. Mazur A, Kusniec J, Strasberg B. Bundle branch reentrant ventricular tachycardia. Indian Pacing Electrophysiol J. 2005;5:86–95.

    PubMed Central  PubMed  Google Scholar 

  188. Nogami A. Purkinje-related arrhythmias part I: monomorphic ventricular tachycardias. Pacing Clin Electrophysiol. 2011;34:624–50.

    PubMed  Google Scholar 

  189. Ben Caref E, Boutjdir M, Himel HD, El-Sherif N. Role of subendocardial Purkinje network in triggering torsade de pointes arrhythmia in experimental long QT syndrome. Europace. 2008;10:1218–23.

    CAS  PubMed  Google Scholar 

  190. Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc DD, Coumel P. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation. 1995;91:1512–9.

    CAS  PubMed  Google Scholar 

  191. Herron TJ, Milstein ML, Anumonwo J, Priori SG, Jalife J. Purkinje cell calcium dysregulation is the cellular mechanism that underlies catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2010;7:1122–8.

    PubMed Central  PubMed  Google Scholar 

  192. Kang G, Giovannone SF, Liu N, Liu FY, Zhang J, Priori SG, et al. Purkinje cells from RyR2 mutant mice are highly arrhythmogenic but responsive to targeted therapy. Circ Res. 2010;107:512–9.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halina Dobrzynski PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Logantha, S.J.R.J., Atkinson, A.J., Boyett, M.R., Dobrzynski, H. (2014). Molecular Basis of Arrhythmias Associated with the Cardiac Conduction System. In: Kibos, A., Knight, B., Essebag, V., Fishberger, S., Slevin, M., Țintoiu, I. (eds) Cardiac Arrhythmias. Springer, London. https://doi.org/10.1007/978-1-4471-5316-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5316-0_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5315-3

  • Online ISBN: 978-1-4471-5316-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics