Skip to main content

Hemodynamics of the Early Embryo Circulation

  • Chapter
  • First Online:

Abstract

Development of the embryonic heart and the peripheral circulation is a dynamic process of rapid growth and continuous remodeling, which is intricately bonded with hemodynamics. Paralleling the increasing metabolic needs are changes in heart rate, cardiac output, blood pressure, and decreasing peripheral resistance. A number of studies report comparable values of hemodynamic parameters in avian, zebrafish, and amphibian embryos [1]. Recent advances in invasive intravital Doppler flow imaging have added new insights into the developmental hemodynamics of mammalian embryos [2–4]. We will now examine some of the basic hemodynamic parameters in chick, zebrafish, and mammalian embryos. See Table 3.1 for the developmental milestones of heart development in chick, zebrafish, mouse, and human embryos.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Burggren WW, Pinder AW. Ontogeny of cardiovascular and respiratory physiology in lower vertebrates. Annu Rev Physiol. 1991;53(1):107–35.

    Article  PubMed  CAS  Google Scholar 

  2. Keller BB, et al. In vivo assessment of embryonic cardiovascular dimensions and function in day-10.5 to-14.5 mouse embryos. Circ Res. 1996;79(2):247.

    Article  PubMed  CAS  Google Scholar 

  3. Hove JAYR. Quantifying cardiovascular flow dynamics during early development. Pediatr Res. 2006;60(1):6.

    Article  PubMed  Google Scholar 

  4. Phoon CKL. Circulatory physiology in the developing embryo. Curr Opin Pediatr. 2001;13(5):456.

    Article  PubMed  CAS  Google Scholar 

  5. Sissman NJ. Developmental landmarks in cardiac morphogenesis: comparative chronology. Am J Cardiol. 1970;25(2):141–8.

    Article  PubMed  CAS  Google Scholar 

  6. Forouhar AS, et al. The embryonic vertebrate heart tube is a dynamic suction pump. Science. 2006;312(5774):751.

    Article  PubMed  CAS  Google Scholar 

  7. Fishman MC, Chien KR. Fashioning the vertebrate heart: earliest embryonic decisions. Development. 1997;124(11):2099.

    PubMed  CAS  Google Scholar 

  8. Hu N, Clark E. Hemodynamics of the stage 12 to stage 29 chick embryo. Circ Res. 1989;65(6):1665.

    Article  PubMed  CAS  Google Scholar 

  9. Manasek FJ. Histogenesis of the embryonic myocardium. Am J Cardiol. 1970;25(2):149–68.

    Article  PubMed  CAS  Google Scholar 

  10. Lim SS, Woodroofe MN, Lemanski LF. An analysis of contractile proteins in developing chick heart by SDS polyacrylamide gel electrophoresis and electron microscopy. J Embryol Exp Morphol. 1983;77(1):1.

    PubMed  CAS  Google Scholar 

  11. Pappano AJ. Ontogenetic development of autonomic neuroeffector transmission and transmitter reactivity in embryonic and fetal hearts. Pharmacol Rev. 1977;29(1):3.

    PubMed  CAS  Google Scholar 

  12. Clark EB, Hu N. Hemodynamics of the developing cardiovascular system. Ann N Y Acad Sci. 1990;588(1):41–7.

    Article  PubMed  CAS  Google Scholar 

  13. Hu N, Ngo TD, Clark EB. Distribution of blood flow between embryo and vitelline bed in the stage 18, 21 and 24 chick embryo. Cardiovasc Res. 1996;31(supp1):E127.

    Article  PubMed  Google Scholar 

  14. Cuneo B, Hughes S, Benson D. Heart rate perturbation in the stage 17–27 chick embryo: effect on stroke volume and aortic flow. Am J Physiol Heart Circ Physiol. 1993;264(3):H755.

    CAS  Google Scholar 

  15. Burggren WW. What is the purpose of the embryonic heart beat? Or how facts can ultimately prevail over physiological dogma. Physiol Biochem Zool. 2004;77(3):333–45.

    Article  PubMed  Google Scholar 

  16. Clark EB, Hu N. Developmental hemodynamic changes in the chick embryo from stage 18 to 27. Circ Res. 1982;51(6):810.

    Article  PubMed  CAS  Google Scholar 

  17. Hu N, et al. Structure and function of the developing zebrafish heart. Anat Rec. 2000;260(2):148–57.

    Article  PubMed  CAS  Google Scholar 

  18. Yoshigi M, Ettel JM, Keller BB. Developmental changes in flow-wave propagation velocity in embryonic chick vascular system. Am J Physiol Heart Circ Physiol. 1997;273(3):H1523.

    CAS  Google Scholar 

  19. Fraisl P, et al. Regulation of angiogenesis by oxygen and metabolism. Dev Cell. 2009;16(2):167–79.

    Article  PubMed  CAS  Google Scholar 

  20. Yoshigi M, Hu N, Keller B. Dorsal aortic impedance in stage 24 chick embryo following acute changes in circulating blood volume. Am J Physiol Heart Circ Physiol. 1996;270(5):H1597.

    CAS  Google Scholar 

  21. Keller BB, Yoshigi M, Tinney JP. Ventricular-vascular uncoupling by acute conotruncal occlusion in the stage 21 chick embryo. Am J Physiol Heart Circ Physiol. 1997;273(6):H2861.

    CAS  Google Scholar 

  22. Lucitti JL, Tobita K, Keller BB. Arterial hemodynamics and mechanical properties after circulatory intervention in the chick embryo. J Exp Biol. 2005;208(10):1877.

    Article  PubMed  Google Scholar 

  23. Zahka KG, et al. Aortic impedance and hydraulic power in the chick embryo from stages 18 to 29. Circ Res. 1989;64(6):1091.

    Article  PubMed  CAS  Google Scholar 

  24. Stainier D, Lee RK, Fishman MC. Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development. 1993;119(1):31.

    PubMed  CAS  Google Scholar 

  25. Liebling M, et al. Rapid three dimensional imaging and analysis of the beating embryonic heart reveals functional changes during development. Dev Dyn. 2006;235(11):2940–8.

    Article  PubMed  Google Scholar 

  26. Keller BB, et al. Ventricular pressure-area loop characteristics in the stage 16 to 24 chick embryo. Circ Res. 1991;68(1):226.

    Article  PubMed  CAS  Google Scholar 

  27. Pelster B, Burggren W. Central arterial hemodynamics in larval bullfrogs (Rana catesbeiana): developmental and seasonal influences. Am J Physiol Regul Integr Comp Physiol. 1991;260(1):R240.

    CAS  Google Scholar 

  28. Hove JR, et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature. 2003;421(6919):172–7.

    Article  PubMed  CAS  Google Scholar 

  29. LaBarbera M. Principles of design of fluid transport systems in zoology. Science. 1990;249(4972):992.

    Article  PubMed  CAS  Google Scholar 

  30. Mäkikallio K, Tekay A, Jouppila P. Yolk sac and umbilicoplacental hemodynamics during early human embryonic development. Ultrasound Obstet Gynecol. 1999;14(3):175–9.

    Article  PubMed  Google Scholar 

  31. MacLennan MJ, Keller BB. Umbilical arterial blood flow in the mouse embryo during development and following acutely increased heart rate. Ultrasound Med Biol. 1999;25(3):361–70.

    Article  PubMed  CAS  Google Scholar 

  32. Phoon CKL, Aristizabal O, Turnbull DH. 40 MHz Doppler characterization of umbilical and dorsal aortic blood flow in the early mouse embryo. Ultrasound Med Biol. 2000;26(8):1275–83.

    Article  PubMed  CAS  Google Scholar 

  33. Phoon CKL, Turnbull DH. Ultrasound biomicroscopy-Doppler in mouse cardiovascular development. Physiol Genomics. 2003;14(1):3.

    PubMed  Google Scholar 

  34. Sadler TW. Langman’s medical embryology. 11th ed. Philadelphia: Lippincott Williams & Wilkins; 2010.

    Google Scholar 

  35. Huisman TWA. Doppler assessment of the fetal venous system. Semin Perinatol. 2001;25:21–31.

    Article  PubMed  CAS  Google Scholar 

  36. Hanafy A, Peterson CM. Twin-reversed arterial perfusion (TRAP) sequence: case reports and review of literature. Aust NZ J Obstet Gynaecol. 1997;37(2):187–91.

    Article  CAS  Google Scholar 

  37. Sogaard K, Skibsted L, Brocks V. Acardiac twins: pathophysiology, diagnosis, outcome and treatment. Fetal Diagn Ther. 2000;14(1):53–9.

    Google Scholar 

  38. De Langen C. The placenta as an example of a peripheral heart. Cardiology. 1954;24(6):346–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Furst, B. (2014). Hemodynamics of the Early Embryo Circulation. In: The Heart and Circulation. Springer, London. https://doi.org/10.1007/978-1-4471-5277-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5277-4_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5276-7

  • Online ISBN: 978-1-4471-5277-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics