Skip to main content

Targeted Renal Nerve Deactivation by Neurotropic Agents

  • Chapter
  • First Online:
Renal Denervation

Abstract

Renal denervation through catheter-based ablation of renal nerves appears to be a promising therapy to treat resistant hypertension. Currently, there are several approaches in development to achieve ablation. These include energy-based approaches using radiofrequency (RF), ultrasound (intravascular and extra-vascular), beta-radiation and cryoablation [1–8]. All energy-based approaches are untargeted and have the potential to damage the vascular wall and surrounding tissue. Moreover, OCT findings have shown that RF probes damage the endothelial layer and cause thrombus formation on the intraluminal side [9]. Late stenosis in renal arteries have also been reported in a limited number of cases with RF ablation [10, 11]. In addition, energy-based approaches are not suitable for treating stented areas of the renal arteries [12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertog SC, et al. Renal denervation for hypertension. JACC Cardiovasc Interv. 2012;5:249–58.

    Article  PubMed  Google Scholar 

  2. Symplicity HTN-1 Investigators. Catheter-based renal sympathetic denervation for resistant hypertension. Hypertension. 2011;57:911–7.

    Article  Google Scholar 

  3. Kandzari DE, et al. Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 trial. Clin Cardiol. 2012;35:528–35.

    Article  PubMed  Google Scholar 

  4. Ormiston JA, et al. Renal denervation for resistant hypertension using an irrigated radiofrequency balloon: 12-month results from the Renal Hypertension Ablation System (RHAS) trial. EuroIntervention. 2013;9:70–4.

    Article  PubMed  Google Scholar 

  5. Rocha-Singh KJ. Renal artery denervation: a brave new frontier- emerging therapies for treating patients with severe, treatment-resistant hypertension. Endovasc Today. 2012;6:45–53.

    Google Scholar 

  6. Brinton, et al. Externally focused ultrasound for sympathetic renal denervation. WAVE 1 First-In-Man Study, TCT 2012, Miami, 2012.

    Google Scholar 

  7. Ahmed H, et al. Renal sympathetic denervation using an irrigated radiofrequency ablation catheter for management of drug-resistant hypertension. JACC Cardiovasc Interv. 2012;5:758–65.

    Article  PubMed  Google Scholar 

  8. Waxman, Barbash. Renal artery brachytherapy for sympathetic renal denervation for the treatment of resistant hypertension: preclinical safety study. CRT 2013, Washington, DC, 2013.

    Google Scholar 

  9. Templin C, et al. Vascular lesions induced by renal nerve ablation as assessed by optical coherence tomography: pre- and post-procedural comparison with the Simplicity catheter system and the EnligHTN multi-electrode renal denervation catheter. Eur Heart J. 2013;34:2141–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Vonend O, et al. Secondary rise in blood pressure after renal denervation. Lancet. 2012;380:778.

    Article  PubMed  Google Scholar 

  11. Kaltenbach B, et al. Renal artery stenosis after renal sympathetic denervation. JACC. 2012;60:2694–5.

    Article  PubMed  Google Scholar 

  12. Melder et al. Renal denervation in stented porcine arteries. EuroPCR 2013, Paris, 2013.

    Google Scholar 

  13. Scheffers IJ, et al. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. JACC. 2010;15:1254–8.

    Article  Google Scholar 

  14. Scott B. Percutaneous AV fistula for resistant hypertension. EuroPCR 2012, Paris, 2012.

    Google Scholar 

  15. Stefanadis C, et al. Chemical denervation of the renal artery by vincristine in swine. A new catheter based technique. Int J Cardiol. 2012;167:4215–5.

    Google Scholar 

  16. Owens CD. Adventitial drug-induced renal artery denervation in refractory hypertension: preclinical experience and first-in-human plans. TCT 2010, Washington, DC, 2010.

    Google Scholar 

  17. Fischell TA, et al. Ethanol-mediated perivascular renal sympathetic denervation: preclinical validation of safety and efficacy in a porcine model. EuroIntervention. 2013;9:140–7.

    Article  PubMed  Google Scholar 

  18. Herring N, Paterson DJ. Neuromodulators of peripheral cardiac sympatho-vagal balance. Exp Physiol. 2009;94(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  19. Shanks J, Townend JN. Peripheral cardiac sympathetic hyperactivity in cardiovascular disease. Am J Physiol Regul Integr Comp Physiol. 2013;305(12):R1411–20.

    Article  CAS  PubMed  Google Scholar 

  20. Russell JA. Bench-to-bedside review: vasopressin in the management of septic shock. Crit Care. 2011;15(4):226.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Osborn JL, et al. Long-term increases in renal sympathetic nerve activity and hypertension. Clin Exp Pharmacol Physiol. 1997;24(1):72–6.

    Article  CAS  PubMed  Google Scholar 

  22. Maiter D. Pheochromocytoma: a paradigm for catecholamine-mediated hypertension. Acta Clin Belg. 2004;59(4):209–19.

    Article  CAS  PubMed  Google Scholar 

  23. Oparil S. The sympathetic nervous system in clinical and experimental hypertension. Kidney Int. 1986;30(3):437–52.

    Article  CAS  PubMed  Google Scholar 

  24. Schlaich MP, et al. International expert consensus statement: percutaneous transluminal renal denervation for the treatment of resistant hypertension. J Am Coll Cardiol. 2013;62(22):2031–45.

    Article  PubMed  Google Scholar 

  25. Mancia G, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension. J Hypertens. 2013;31:1281–357.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. Jorge Garcia, Félix Vega and Michelle Kelly (ISIS Services) for conducting preclinical studies and Drs. Narayan Raju (Pathology Research Laboratories) and Dr. Renu Virmani (CVPath Institute) for conducting histopathology and preparing immunohistochemical stains and pathology reports.

In addition, the authors thank the clinical investigators Drs. Konstantine Kipiani, Vakhtang Kipiani and Tea Mukhuradze (The Center for Vascular and Heart Diseases of Georgia, Tbilisi, Georgia); Dr. Horst Sievert (CardioVasculares Centrum, St. Katharinen-Krankenhaus, Frankfurt, Germany); Dr. Nicholas Kipshidze (Lenox Hill Hospital, New York, NY and General Director and Physician-in-Chief, Kipshidze University Hospital, Tbilisi, Georgia); and Dr. Michael Wholey for conducting the study and providing the clinical data for this manuscript. The Investigators plan to publish the results once follow-up data from all patients become available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H. Wholey MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Wholey, M.H., Stein, E., Evans, M., Venkateswara Rao, K.T. (2015). Targeted Renal Nerve Deactivation by Neurotropic Agents. In: Heuser, R., Schlaich, M., Sievert, H. (eds) Renal Denervation. Springer, London. https://doi.org/10.1007/978-1-4471-5223-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5223-1_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5222-4

  • Online ISBN: 978-1-4471-5223-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics