Skip to main content

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

  • 3058 Accesses

Abstract

The goal of image segmentation is to partition the image plane into a set of meaningful regions. While generic low-level segmentation algorithms often impose a prior which favors shorter boundaries, for segmenting familiar structures in images it may be advantageous to impose a more object-specific shape prior. Over the years, researchers have proposed different algorithms to impose prior shape knowledge based on either explicit or implicit representations of shape. In the following, I will provide a brief review of several approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amini AA, Weymouth TE, Jain RC (1990) Using dynamic programming for solving variational problems in vision. IEEE Trans Pattern Anal Mach Intell 12(9):855–867

    Article  Google Scholar 

  2. Awate SP, Tasdizen T, Whitaker RT (2006) Unsupervised texture segmentation with nonparametric neighborhood statistics. In: European conference on computer vision (ECCV), Graz, Austria, May 2006. Springer, Berlin, pp 494–507

    Google Scholar 

  3. Blake A, Isard M (1998) Active contours. Springer, London

    Book  Google Scholar 

  4. Blake A, Zisserman A (1987) Visual reconstruction. MIT Press, Cambridge

    Google Scholar 

  5. Bookstein FL (1978) The measurement of biological shape and shape change. Lect notes in biomath, vol 24. Springer, New York

    Book  MATH  Google Scholar 

  6. Boykov Y, Kolmogorov V (2003) Computing geodesics and minimal surfaces via graph cuts. In: IEEE int conf on computer vision, Nice, pp 26–33

    Chapter  Google Scholar 

  7. Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26(9):1124–1137

    Article  Google Scholar 

  8. Brox T, Rousson M, Deriche R, Weickert J (2003) Unsupervised segmentation incorporating colour, texture, and motion. In: Petkov N, Westenberg MA (eds) Computer analysis of images and patterns, Groningen, The Netherlands, August 2003. LNCS, vol 2756. Springer, Berlin, pp 353–360

    Chapter  Google Scholar 

  9. Brox T, Weickert J (2004) A TV flow based local scale measure for texture discrimination. In: Pajdla T, Hlavac V (eds) European conf. on computer vision, Prague. LNCS, vol 3022. Springer, Berlin, pp 578–590

    Google Scholar 

  10. Caselles V, Kimmel R, Sapiro G (1995) Geodesic active contours. In: Proc IEEE intl conf on comp vis, Boston, USA, pp 694–699

    Chapter  Google Scholar 

  11. Chambolle A, Cremers D, Pock T (2012) A convex approach to minimal partitions. SIAM J Imaging Sci 5(4):1113–1158

    Article  MathSciNet  MATH  Google Scholar 

  12. Chan T, Esedoḡlu S, Nikolova M (2006) Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J Appl Math 66(5):1632–1648

    Article  MathSciNet  MATH  Google Scholar 

  13. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  14. Cipolla R, Blake A (1990) The dynamic analysis of apparent contours. In: IEEE int. conf on computer vision. Springer, Berlin, pp 616–625

    Google Scholar 

  15. Cootes TF, Taylor CJ, Cooper DM, Graham J (1995) Active shape models—their training and application. Comput Vis Image Underst 61(1):38–59

    Article  Google Scholar 

  16. Coughlan J, Yuille A, English C, Snow D (2000) Efficient deformable template detection and localization without user initialization. Comput Vis Image Underst 78(3):303–319

    Article  Google Scholar 

  17. Courant R, Hilbert D (1953) Methods of mathematical physics, vol 1. Interscience, New York

    Google Scholar 

  18. Cremers D (2006) Dynamical statistical shape priors for level set based tracking. IEEE Trans Pattern Anal Mach Intell 28(8):1262–1273

    Article  Google Scholar 

  19. Cremers D (2008) Nonlinear dynamical shape priors for level set segmentation. J Sci Comput 35(2–3):132–143

    Article  MathSciNet  MATH  Google Scholar 

  20. Cremers D, Kohlberger T, Schnörr C (2003) Shape statistics in kernel space for variational image segmentation. Pattern Recognit 36(9):1929–1943

    Article  MATH  Google Scholar 

  21. Cremers D, Osher SJ, Soatto S (2006) Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int J Comput Vis 69(3):335–351

    Article  Google Scholar 

  22. Cremers D, Rousson M, Deriche R (2007) A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int J Comput Vis 72(2):195–215

    Article  Google Scholar 

  23. Cremers D, Schmidt FR, Barthel F (2008) Shape priors in variational image segmentation: convexity, Lipschitz continuity and globally optimal solutions. In: IEEE conference on computer vision and pattern recognition (CVPR), Anchorage, Alaska, June 2008

    Google Scholar 

  24. Cremers D, Soatto S (2005) Motion Competition: a variational framework for piecewise parametric motion segmentation. Int J Comput Vis 62(3):249–265

    Article  Google Scholar 

  25. Cremers D, Sochen N, Schnörr C (2006) A multiphase dynamic labeling model for variational recognition-driven image segmentation. Int J Comput Vis 66(1):67–81

    Article  Google Scholar 

  26. Cremers D, Tischhäuser F, Weickert J, Schnörr C (2002) Diffusion Snakes: introducing statistical shape knowledge into the Mumford–Shah functional. Int J Comput Vis 50(3):295–313

    Article  MATH  Google Scholar 

  27. Dervieux A, Thomasset F (1979) A finite element method for the simulation of Raleigh-Taylor instability. Springer Lect Notes in Math, vol 771. pp 145–158

    Google Scholar 

  28. Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, Chichester

    MATH  Google Scholar 

  29. Farin G (1997) Curves and surfaces for computer–aided geometric design. Academic Press, San Diego

    MATH  Google Scholar 

  30. Franchini E, Morigi S, Sgallari F (2009) Segmentation of 3d tubular structures by a pde-based anisotropic diffusion model. In: Intl. conf. on scale space and variational methods. LNCS, vol 5567. Springer, Berlin, pp 75–86

    Chapter  Google Scholar 

  31. Fréchet M (1961) Les courbes aléatoires. Bull Inst Int Stat 38:499–504

    MATH  Google Scholar 

  32. Geiger D, Gupta A, Costa LA, Vlontzos J (1995) Dynamic programming for detecting, tracking and matching deformable contours. IEEE Trans Pattern Anal Mach Intell 17(3):294–302

    Article  Google Scholar 

  33. Greig DM, Porteous BT, Seheult AH (1989) Exact maximum a posteriori estimation for binary images. J R Stat Soc B 51(2):271–279

    Google Scholar 

  34. Grenander U, Chow Y, Keenan DM (1991) Hands: a pattern theoretic study of biological shapes. Springer, New York

    Google Scholar 

  35. Heiler M, Schnörr C (2003) Natural image statistics for natural image segmentation. In: IEEE int. conf. on computer vision, pp 1259–1266

    Chapter  Google Scholar 

  36. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  Google Scholar 

  37. Kendall DG (1977) The diffusion of shape. Adv Appl Probab 9:428–430

    Article  Google Scholar 

  38. Kervrann C, Heitz F (1999) Statistical deformable model-based segmentation of image motion. IEEE Trans Image Process 8:583–588

    Article  Google Scholar 

  39. Kichenassamy S, Kumar A, Olver PJ, Tannenbaum A, Yezzi AJ (1995) Gradient flows and geometric active contour models. In: IEEE int. conf. on computer vision, pp 810–815

    Chapter  Google Scholar 

  40. Kim J, Fisher JW, Yezzi A, Cetin M, Willsky A (2002) Nonparametric methods for image segmentation using information theory and curve evolution. In: Int. conf. on image processing, vol 3, pp 797–800

    Google Scholar 

  41. Klodt M, Cremers D (2011) A convex framework for image segmentation with moment constraints. In: IEEE int. conf. on computer vision

    Google Scholar 

  42. Kohlberger T, Cremers D, Rousson M, Ramaraj R (2006) 4d shape priors for level set segmentation of the left myocardium in SPECT sequences. In: Medical image computing and computer assisted intervention, October 2006. LNCS, vol 4190, pp 92–100

    Google Scholar 

  43. Leventon M, Grimson W, Faugeras O (2000) Statistical shape influence in geodesic active contours. In: Int. conf. on computer vision and pattern recognition, Hilton Head Island, SC, vol 1. pp 316–323

    Google Scholar 

  44. Malladi R, Sethian JA, Vemuri BC (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175

    Article  Google Scholar 

  45. Matheron G (1975) Random sets and integral geometry. Wiley, New York

    MATH  Google Scholar 

  46. Menet S, Saint-Marc P, Medioni G (1990) B–snakes: implementation and application to stereo. In: Proc. DARPA image underst workshop, April 6–8, pp 720–726

    Google Scholar 

  47. Mercer J (1909) Functions of positive and negative type and their connection with the theory of integral equations. Philos Trans R Soc Lond A 209:415–446

    Article  MATH  Google Scholar 

  48. Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42:577–685

    Article  MathSciNet  MATH  Google Scholar 

  49. Nain D, Yezzi A, Turk G (2003) Vessel segmentation using a shape driven flow. In: MICCAI, pp 51–59

    Google Scholar 

  50. Nieuwenhuis C, Cremers D (2013) Spatially varying color distributions for interactive multi-label segmentation. IEEE Trans Pattern Anal Mach Intell 35(5):1234–1247

    Article  Google Scholar 

  51. Osher SJ, Sethian JA (1988) Fronts propagation with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comp Physiol 79:12–49

    MathSciNet  MATH  Google Scholar 

  52. Paragios N, Deriche R (2002) Geodesic active regions and level set methods for supervised texture segmentation. Int J Comput Vis 46(3):223–247

    Article  MATH  Google Scholar 

  53. Parent P, Zucker SW (1989) Trace inference, curvature consistency, and curve detection. IEEE Trans Pattern Anal Mach Intell 11(8):823–839

    Article  Google Scholar 

  54. Parzen E (1962) On the estimation of a probability density function and the mode. Ann Math Stat 33:1065–1076

    Article  MathSciNet  MATH  Google Scholar 

  55. Rochery M, Jermyn I, Zerubia J (2006) Higher order active contours. Int J Comput Vis 69(1):27–42

    Article  Google Scholar 

  56. Rosenblatt F (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27:832–837

    Article  MathSciNet  MATH  Google Scholar 

  57. Rousson M, Brox T, Deriche R (2003) Active unsupervised texture segmentation on a diffusion based feature space. In: Proc. IEEE conf. on comp. vision patt. recog, Madison, WI, pp 699–704

    Google Scholar 

  58. Rousson M, Cremers D (2005) Efficient kernel density estimation of shape and intensity priors for level set segmentation. In: MICCAI, vol 1, pp 757–764

    Google Scholar 

  59. Rousson M, Paragios N, Deriche R (2004) Implicit active shape models for 3d segmentation in MRI imaging. In: MICCAI. LNCS, vol 2217. Springer, Berlin, pp 209–216

    Google Scholar 

  60. Rosenfeld A, Zucker SW, Hummel RA (1977) An application of relaxation labeling to line and curve enhancement. IEEE Trans Comput 26(4):394–403

    Google Scholar 

  61. Schmidt FR, Cremers D (2009) A closed-form solution for image sequence segmentation with dynamical shape priors. In: Pattern recognition (Proc. DAGM), September 2009

    Google Scholar 

  62. Schmidt FR, Farin D, Cremers D (2007) Fast matching of planar shapes in sub-cubic runtime. In: IEEE int. conf. on computer vision, Rio de Janeiro, October 2007

    Google Scholar 

  63. Schoenemann T, Cremers D (2007) Globally optimal image segmentation with an elastic shape prior. In: IEEE int. conf. on computer vision, Rio de Janeiro, Brasil, October 2007

    Google Scholar 

  64. Schoenemann T, Cremers D (2007) Introducing curvature into globally optimal image segmentation: minimum ratio cycles on product graphs. In: IEEE int conf on computer vision, Rio de Janeiro, October 2007

    Google Scholar 

  65. Schoenemann T, Cremers D (2008) Matching non-rigidly deformable shapes across images: a globally optimal solution. In: IEEE conference on computer vision and pattern recognition (CVPR), Anchorage, Alaska, June 2008

    Google Scholar 

  66. Schoenemann T, Cremers D (2009) A combinatorial solution for model-based image segmentation and real-time tracking. IEEE Trans Pattern Anal Mach Intell

    Google Scholar 

  67. Schoenemann T, Kahl F, Masnou S, Cremers D (2012) A linear framework for region-based image segmentation and inpainting involving curvature penalization. Int J Comput Vis 99:53–68

    Article  MathSciNet  MATH  Google Scholar 

  68. Schoenemann T, Schmidt FR, Cremers D (2008) Image segmentation with elastic shape priors via global geodesics in product spaces. In: British machine vision conference, Leeds, UK, September 2008

    Google Scholar 

  69. Sebastian T, Klein P, Kimia B (2003) On aligning curves. IEEE Trans Pattern Anal Mach Intell 25(1):116–125

    Article  Google Scholar 

  70. Serra J (1982) Image analysis and mathematical morophology. Academic Press, London

    Google Scholar 

  71. Tsai A, Wells W, Warfield SK, Willsky A (2004) Level set methods in an EM framework for shape classification and estimation. In: MICCAI

    Google Scholar 

  72. Tsai A, Yezzi A, Wells W, Tempany C, Tucker D, Fan A, Grimson E, Willsky A (2001) Model–based curve evolution technique for image segmentation. In: Comp vision patt recog, Kauai, Hawaii, pp 463–468

    Google Scholar 

  73. Tsai A, Yezzi AJ, Willsky AS (2001) Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans Image Process 10(8):1169–1186

    Article  MATH  Google Scholar 

  74. Unal G, Krim H, Yezzi AY (2005) Information-theoretic active polygons for unsupervised texture segmentation. Int J Comput Vis, May

    Google Scholar 

  75. Unger M, Pock T, Cremers D, Bischof H (2008) TVSeg—interactive total variation based image segmentation. In: British machine vision conference (BMVC), Leeds, UK, September 2008

    Google Scholar 

  76. Zhu SC, Yuille A (1996) Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans Pattern Anal Mach Intell 18(9):884–900

    Article  Google Scholar 

Download references

Acknowledgements

The work described here was done in collaboration with numerous researchers. The author would like to thank T. Schoenemann, F.R. Schmidt, C. Schnoerr, S. Soatto, N. Sochen, T. Kohlberger, M. Rousson and S.J. Osher for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Cremers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Cremers, D. (2013). Shape Priors for Image Segmentation. In: Dickinson, S., Pizlo, Z. (eds) Shape Perception in Human and Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5195-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5195-1_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5194-4

  • Online ISBN: 978-1-4471-5195-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics