Skip to main content

Laser-Assisted Manufacturing: Fundamentals, Current Scenario, and Future Applications

  • Chapter
  • First Online:
Book cover Nontraditional Machining Processes

Abstract

This chapter presents the basic principles, applications, and future prospects of various laser-assisted manufacturing techniques used for material removal, joining, and additive manufacturing. The laser hazard and safety aspect is also briefly included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertolotti M (2005) The history of the laser. The Institute of Physics, London

    Google Scholar 

  2. Steen WM, Mazumder J (2010) Laser material processing. Springer, London

    Book  Google Scholar 

  3. Silfvast WT (2004) Laser fundamentals. Cambridge Press, Cambridge

    Book  Google Scholar 

  4. Thyagrajan K, Ghatak A (2010) Lasers: fundamentals and applications. Springer, London

    Google Scholar 

  5. Meijer J (2004) Laser beam machining (LBM), state of the art and new opportunities. J Mater Process Technol 149:2–17

    Article  Google Scholar 

  6. Dahotre NB, Harimkar SP (2010) Laser fabrication and machining of materials. Springer, London

    Google Scholar 

  7. www.obrusn.torun.pl/htm0/prod_images/rofin/Laserbook.pdf. Accessed 9 Dec 2012

  8. Ready JF (2001) LIA handbook of laser material processing. Magnolia Publishing, Inc., Magnolia

    Google Scholar 

  9. Powell J, Al-Mashikhi SO, Kaplan AFH, Voiseya KT (2011) Fibre laser cutting of thin section mild steel: an explanation of the ‘striation free’ effect. Opt Lasers Eng 49:1069–1075

    Article  Google Scholar 

  10. Kukreja LM, Kaul R, Paul CP, Ganesh P, Rao BT (2012) Emerging laser materials processing techniques for future industrial applications. In: Majumdar JD, Manna I (eds) Laser-assisted fabrication of materials. Springer, London

    Google Scholar 

  11. Windholz R, Molian P (1997) Nanosecond pulsed excimer laser machining of CVD diamond and HOPG graphite. J Mater Sci 32:4295–4301

    Article  Google Scholar 

  12. Shirk MD, Molian PA (1998) Ultrashort laser ablation of diamond. J Laser Appl 10:64–70

    Article  Google Scholar 

  13. Liu L, Chang CY, Wu W, Pearton SJ, Ren F (2013) Circular and rectangular via holes formed in SiC via using ArF based UV excimer laser. Appl Surf Sci 257:2303–2307

    Article  Google Scholar 

  14. Bachmann FG (1990) Industrial laser applications. Appl Surf Sci 46:254–263

    Article  Google Scholar 

  15. Riccardi G, Cantello M, Mariotti F, Giacosa P (1998) Micromachining with excimer laser. CIRP Ann 47:145–148

    Article  Google Scholar 

  16. Quintino L, Costa A, Miranda R, Yapp D, Kumar V, Kong CJ (2007) Welding with high power fiber lasers—a preliminary study. Mater Des 28:1231–1237

    Article  Google Scholar 

  17. Kinoshita K, Mizutani M, Kawahito Y, Katayama S (2006) Phenomena of welding with high-power fiber laser. Paper #902 proceedings of ICALEO, pp 535-541

    Google Scholar 

  18. Khan MMA, Romoli L, Fiaschi M, Sarri F, Dini G (2010) Experimental investigation on laser beam welding of martensitic stainless steels in a constrained overlap joint configuration. J Mater Process Technol 210:1340–1353

    Article  Google Scholar 

  19. Katayama S, Kawahito Y, Mizutani M (2010) Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects. Physics procedia 5:9–17

    Article  Google Scholar 

  20. Zhang X, Ashida E, Katayama S, Mizutani M (2009) Deep penetration welding of thick section steels with 10 kW fiber laser. Transactions of JWRI 27:63–73

    Google Scholar 

  21. Manonmani K, Murugan KN, Buvanasekaran G (2007) Effects of process parameters on the bead geometry of laser beam butt welded stainless steel sheets. Int J Adv Manuf Technol 32:1125–1133

    Article  Google Scholar 

  22. Berger P, Hügel H, Hess A, Weber R, Graf T (2011) Understanding of humping based on conservation of volume flow. Physics Procedia 12:232–240

    Article  Google Scholar 

  23. Wang R, Rasheed S, Serizawa H, Murarkawa H, Zhang J (2008) Numerical and experimental investigations on welding deformation. Trans JWRI 37:79–90

    Google Scholar 

  24. Deng D, Liang W, Murakawa H (2007) Determination of welding deformation in fillet-welded joint by means of numerical simulation and comparison with experimental measurement. J Mater Process Technol 183:219–225

    Article  Google Scholar 

  25. Kraetzsch M (2012) Laser beam welding with high frequency. LIA Today 18

    Google Scholar 

  26. Torkamany MJ, Tahamtan S, Sabbaghzadeh J (2010) Dissimilar welding of carbon steel to 5754 aluminum alloy by Nd:YAG pulsed laser. Mater Des 31:458–465

    Article  Google Scholar 

  27. Anawa EM, Olabi AG (2008) Optimization of tensile strength of ferritic/austenitic laser welded components. Opt Laser Technol 46:571–577

    Article  Google Scholar 

  28. Yoshihisa S, Takuya T, Kazuhiro N (2010) Dissimilar laser brazing of boron nitride and tungsten carbide. Mater Des 31:2071–2077

    Article  Google Scholar 

  29. Mai TA, Spowage AC (2004) Characterization of dissimilar joints in laser welding of steel–kovar, copper–steel and copper–aluminium. Mater Sci Eng, A 374:224–233

    Article  Google Scholar 

  30. Dharmendra C, Rao KP, Wilden J, Reich S (2011) Study on laser welding–brazing of zinc coated steel to aluminum alloy with a Zinc based filler. Mater Sci Eng, A 528:1497–1503

    Article  Google Scholar 

  31. Lippmann W, Knorr J, Wolf R, Rasper R, Exner H, Reinecke A-M, Nieher M, Schreiber R (2004) Laser joining of silicon carbide—a new technology for ultra-high temperature resistant joints. Nucl Eng Des 231:151–161

    Article  Google Scholar 

  32. Paul CP, Bhargava P, Kumar A, Kukreja LM (2012) Laser rapid manufacturing: technology, applications, modeling and future prospects. In: Davim JP (ed) Lasers in manufacturing. Wiley-ISTE, London

    Google Scholar 

  33. Masato K (2009) Fiber lasers: research, technology and applications. Nova Science, New York

    Google Scholar 

  34. Huang S, Tsai H, Lin S (2004) Effects of brazing route and brazing alloy on the interfacial structure between diamond and bonding matrix. Mater Chem Phys 84:251–258

    Article  Google Scholar 

  35. Peyre P, Sierra G, Deschaux-Beaume F, Stuart D, Fras G (2007) Generation of aluminium–steel joints with laser-induced reactive wetting. Mater Sci Eng, A 444:327–338

    Article  Google Scholar 

  36. Li L, Feng X, Chen Y (2008) Influence of laser energy input mode on joint interface characteristics in laser brazing with Cu-base filler metal. Trans Nonferrous Met Soc China 18:1065–1070

    Article  Google Scholar 

  37. http://www.sandia.gov/mst/pdf/LENS.pdf. Accessed on 10 Dec 2010

  38. Xue L, Islam MU, Theriault A (2001) Laser consolidation process for the manufacturing of structural components for advanced robotic mechatronic system—a state of art review. In: Proceedings of 6th international symposium on artificial intelligence and robotics and automation in space (i-SAIRAS 2001), Canadian Space Agency, St-Hubert, Quebec, Canada, June 18–22

    Google Scholar 

  39. Paul CP, Khajepour A (2008) Automated laser fabrication of cemented carbide components. Opt Laser Technol 40:735–741

    Article  Google Scholar 

  40. Davis SJ, Watkins KG, Dearden G, Fearon E, Zeng J (2006) Optimum deposition parameters for the direct laser fabrication (DLF) of quasi-hollow structures. In: Proceedings of photon conference Manchester, Institute of Physics

    Google Scholar 

  41. He X, Yu G, Mazumder J (2010) Temperature and composition profile during double-track laser cladding of H13 tool steel. J Phys D Appl Phys 43:015502

    Article  Google Scholar 

  42. Moat RJ, Pinkerton A, Li L, Withers PJ, Preuss M (2009) Crystallographic texture and microstructure of pulsed diode laser-deposited Waspaloy. Acta Mater 5:1220–1229

    Article  Google Scholar 

  43. Zhong M, Liu W (2010) Laser surface cladding: the state of the art and challenges. Proc Inst Mech Eng Part C: J Mech Eng Sci 224:1041–1060

    Article  Google Scholar 

  44. Valsecchi B, Previtali B, Vedani M, Vimercati G (2010) Fiber laser cladding with high content of Wc-Co based powder. Int J Mater Form 3(Suppl):11127–11130

    Google Scholar 

  45. Kreutz E, Backes G, Gasser A, Wissenbach K (1995) Rapid prototyping with CO2 laser radiation. Appl Surf Sci 86:310–316

    Article  Google Scholar 

  46. Sun S, Durandet Y, Brandt M (2005) Parametric investigation of pulsed Nd:YAG laser cladding of Stellite 6 on stainless steel. Surf Coat Technol 194:225–231

    Article  Google Scholar 

  47. Gedda H, Powell J, Wahistrom G, Li WB, Engstrom H, Magnusson C (2002) Energy redistribution during CO2 laser cladding. J Laser Appl 14:78–82

    Article  Google Scholar 

  48. Draugelates U, et al (1994) Corrosion and wear protection by CO2 laser beam cladding combined with the hot wire technology. In: Proceedings of ECLAT ‘94, pp 344–354

    Google Scholar 

  49. Hensel F, Binroth C, Sepold GA (1992) Comparison of powder and wire-fed laser beam cladding. In: Proceedings of ECLAT ‘92, pp 39–44

    Google Scholar 

  50. Paul CP, Jain A, Ganesh P, Negi J, Nath AK (2006) Laser rapid manufacturing of Colmonoy components. Opt Lasers Eng 44:1096–1109

    Article  Google Scholar 

  51. Paul CP, Ganesh P, Mishra SK, Bhargava P, Negi J, Nath AK (2007) Investigating laser rapid manufacturing for Inconel-625 components. Opt Laser Technol 39:800–805

    Article  Google Scholar 

  52. Paul CP, Alemohammad H, Toyserkani E, Khajepour A, Corbin S (2007) Cladding of WC-12Co on low carbon steel using a pulsed Nd:YAG laser. Mater Sci Eng, A 464:170–176

    Article  Google Scholar 

  53. Paul CP, Mishra SK, Premsingh CH, Bhargava P, Tiwari P, Kukreja LM (2012) Studies on laser rapid manufacturing of cross-thin-walled porous structures of Inconel 625. Int J Adv Manuf Technol 61:757–770

    Article  Google Scholar 

  54. Ganesh P, Moitra A, Tiwari P, Sathyanarayanan S, Kumar H, Rai SK, Kaul R, Paul CP, Prasad RC, Kukreja LM (2010) Fracture behavior of laser-clad joint of Stellite 21 on AISI 316L stainless steel. Mater Sci Eng, A 527:3748–3756

    Article  Google Scholar 

  55. http://www.utexas.edu/safety/ehs/lasers/Laser%20Safety%20Handbook-tnt.pdf. Accessed on 9 Dec 2012

  56. Barat K (2009) Laser safety: tools and training. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgments

The authors express their sincere gratitude to Dr. P. D. Gupta, Director Raja Ramanna Centre for Advanced Technology (RRCAT) for his constant support and encouragement. Thanks are due to our collaborators Prof. A. K. Nath of Indian Institute of Technology, Kharagpur, India, and Prof B. K. Gandhi of Indian Institute of Technology, Roorkee, India. During the experimental work presented above, the technical support of Mr. Sohanlal, Mr. A. S. Padiyar, Mr. S. K. Mishra, Mr. C. H. Prem Singh, Mr. M.O. Ittoop, Mr. Abrat Varma, Mr. Anil Adbol, Mr. Ram Nihal Ram, Mr. P Sangale, and Mr. S. K. Perkar of RRCAT and Mr. N. Yadaiah of Indian Institute of Technology, Guwahati, is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Paul, C.P., Kumar, A., Bhargava, P., Kukreja, L.M. (2013). Laser-Assisted Manufacturing: Fundamentals, Current Scenario, and Future Applications. In: Davim, J. (eds) Nontraditional Machining Processes. Springer, London. https://doi.org/10.1007/978-1-4471-5179-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5179-1_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5178-4

  • Online ISBN: 978-1-4471-5179-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics