Skip to main content

Part of the book series: Universitext ((UTX))

  • 5205 Accesses

Abstract

Sections 10.1 and 10.2 are devoted to the general theory of orthogonal systems. Besides basic results (Bessel’s inequality, Riesz–Fischer theorem, etc.) we consider various examples of orthogonal systems (trigonometric system, Rademacher functions, Legendre polynomials, etc.). At the end of Sect. 10.2, we consider orthogonal series of independent functions, which play an important role in probability theory.

In Sects. 10.3 and 10.4 we discuss facts related to trigonometric Fourier series. For such series, we establish convergence conditions, the possibility of termwise integration, and the uniqueness theorem (for both summable functions and measures). We consider summation methods for Fourier series (including the classical methods of Fejér and Abel–Poisson) and the corresponding approximate identities. At the end of Sect. 10.4, we discuss comparatively recent results showing that the results concerning trigonometric series for functions of one variable cannot be carried over to Fourier series of functions of several variables. The rest of Sect. 10.4 is devoted to multiple Fourier series. Along with the counterparts of certain statements in the one-dimensional case, we discuss some facts (failure of the localization principle, etc.) showing that certain classical results cannot be carried over to the multi-dimensional case.

Section 10.5 is devoted to the Fourier transform, which is one of the most important concepts in harmonic analysis. We consider both \(\mathcal{L}^{1}\) and \(\mathcal{L}^{2}\)- theory of the Fourier transform, and, in particular, prove the inversion formula, Plancherel’s theorem, and the uncertainty principle. We also study the Fourier transforms of finite Borel measures. Using the Fourier transform, we prove that the \(\mathcal{L}^{1}\)-norms of the Dirichlet kernels for balls (such kernels arise when studying the multiple Fourier series) have power rate of growth.

In Sect. 10.6, we discuss the Poisson summation formula and its applications. In particular, we show how this formula can be used to estimate the number of integer points in a ball (Gauss’s problem).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Pythagoras (Πυϑαγóρας) (circa 570–500 BC)—Greek philosopher and mathematician.

  2. 2.

    Friedrich Wilhelm Bessel (1784–1846)—German mathematician.

  3. 3.

    Jean Baptiste Joseph Fourier (1768–1830)—French mathematician.

  4. 4.

    Ernest Sigismund Fisher (1875–1954)—German mathematician.

  5. 5.

    Marc-Antoine Parseval (1755–1836)—French mathematician.

  6. 6.

    Fedor L’vovich Nazarov (born 1967)—Russian mathematician.

  7. 7.

    Adolf Hurwitz (1859–1919)—German mathematician.

  8. 8.

    Charles Hermite (1822–1901)—French mathematician.

  9. 9.

    Joseph Leonard Walsh (1895–1973)—American mathematician.

  10. 10.

    Andrei Nikolaevich Kolmogorov (1903–1987)—Russian mathematician.

  11. 11.

    Edmond Nicolas Laguerre (1834–1886)—French mathematician.

  12. 12.

    Ulisse Dini (1845–1918)—Italian mathematician.

  13. 13.

    Marie Ennemond Camille Jordan (1838–1922)—French mathematician.

  14. 14.

    Lennart Axel Edvard Carleson (born 1928)—Swedish mathematician.

  15. 15.

    Arnaud Denjoy (1884–1974)—French mathematician.

  16. 16.

    Ernesto Cesaro (1859–1906)—Italian mathematician.

  17. 17.

    Lipót Fejér (1880–1959)—Hungarian mathematician.

  18. 18.

    Charles Louis Fefferman (born 1949)—American mathematician.

  19. 19.

    Sergei Natanovich Bernstein (1880–1968)—Russian mathematician.

  20. 20.

    Michel Plancherel (1885–1967)—Swiss mathematician.

  21. 21.

    Edmund Georg Hermann Landau (1877–1938)—German mathematician.

References

  1. Alimov, Sh.A., Il’in, V.A., Nikishin, E.M.: Questions on the convergence of multiple trigonometric series and spectral expansions. I. Usp. Mat. Nauk 31(6), 28–83 (1976). 10.4.8

    MATH  Google Scholar 

  2. Alimov, A.Sh.A., Il’in, V.A., Nikishin, E.M.: Questions on the convergence of multiple trigonometric series and spectral expansions. II. Usp. Mat. Nauk 32(1), 107–130 (1977). 10.4.8

    MATH  Google Scholar 

  3. Benedicks, M.: On Fourier transforms of functions supported on sets of finite Lebesgue measure. J. Math. Anal. Appl. 106, 180–183 (1985). 10.6.3

    Article  MathSciNet  MATH  Google Scholar 

  4. Carleson, L.: On the convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966). 10.3.9

    Article  MathSciNet  MATH  Google Scholar 

  5. Cartan, H.: Elementary Theory of Analytic Functions of One or Several Complex Variables. Dover, New York (1995). 10.3.8

    Google Scholar 

  6. Chamizo, F., Iwaniec, H.: On the sphere problem. Rev. Mat. Iberoam. 11(2), 417–429 (1995). 10.6.6

    Article  MathSciNet  MATH  Google Scholar 

  7. Chernoff, P.R.: Pointwise convergence of Fourier series. Am. Math. Mon. 87(5), 399–400 (1980). 10.3.4

    Article  MathSciNet  MATH  Google Scholar 

  8. Erdös, P., Fuchs, W.H.J.: On a problem of additive number theory. J. Lond. Math. Soc. 31, 67–73 (1956). 10.2.1, 10.6.6, 10.6 (Ex. 9)

    Article  MATH  Google Scholar 

  9. Hardy, G.H., Rogosinski, W.W.: Fourier Series. Cambridge University Press, Cambridge (1950). 10.3 (Ex. 5)

    MATH  Google Scholar 

  10. Hua, L.-K.: Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie. Teubner Verlagsgesellschaft, Leipzig (1959). 10.6.6

    MATH  Google Scholar 

  11. Kendall, D.G.: On the number of lattice points inside a random oval. Q. J. Math. Oxf. Ser. 19, 1–26 (1948). 10.6.7

    Article  Google Scholar 

  12. Lukacs, E.: Characteristic Functions. Hafner, New York (1970). 10.5.4

    MATH  Google Scholar 

  13. Nazarov, F.L.: The Bang solution of the coefficient problem. St. Petersburg Math. J. 9(2), 407–419 (1998). 10.1.8

    MathSciNet  Google Scholar 

  14. Pólya, G., Szegö, G.: Problems and Theorems in Analysis, vols. I, II. Springer, Berlin (1998). 10.3.5

    Google Scholar 

  15. Zygmund, A.: Trigonometric Series, vols. I, II. Cambridge University Press, New York (1959). 10.4.7

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Makarov, B., Podkorytov, A. (2013). Fourier Series and the Fourier Transform. In: Real Analysis: Measures, Integrals and Applications. Universitext. Springer, London. https://doi.org/10.1007/978-1-4471-5122-7_10

Download citation

Publish with us

Policies and ethics