Skip to main content

Self-Organizing Traffic Lights: A Realistic Simulation

  • Chapter

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

Abstract

We have previously shown in an abstract simulation (Gershenson in Complex Syst. 16(1):29–53, 2005) that selforganizing traffic lights can greatly improve traffic flow for any density. In this chapter, we extend these results to a realistic setting, implementing self-organizing traffic lights in an advanced traffic simulator using real data from a Brussels avenue. In the next section, a brief introduction to the concept of self-organization is given. The SOTL control method is then presented, followed by the moreVTS simulator. In Sect. 3.5, results from our simulations are shown, followed by Discussion, Future Work, and Conclusions.

B. D’Hooghe is deceased.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ashby, W. R. (1962). Principles of the self-organizing system. In H. V. Foerster & G. W. Zopf Jr. (Eds.), Principles of self-organization (pp. 255–278). New York: Pergamon.

    Google Scholar 

  • Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2003). Self-organization in biological systems. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Cools, S. B. (2006). A realistic simulation for self-organizing traffic lights. Unpublished BSc Thesis, Vrije Universiteit Brussel.

    Google Scholar 

  • Federal Highway Administration (1998). Traffic control systems handbook. Washington: U.S. Department of Transportation.

    Google Scholar 

  • Gershenson, C. (2005). Self-organizing traffic lights. Complex Systems, 16(1), 29–53.

    Google Scholar 

  • Gershenson, C. (2006). A general methodology for designing self-organizing systems (Technical Report 2005-05). ECCO.

    Google Scholar 

  • Gershenson, C. (2007). Design and control of self-organizing systems. Mexico: CopIt Arxives. http://tinyurl.com/DCSOS2007.

    Google Scholar 

  • Gershenson, C. (2008). Self-organizing traffic lights: a realistic simulation. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (1st ed.). London: Springer.

    Google Scholar 

  • Gershenson, C. (2011). Self-organization leads to supraoptimal performance in public transportation systems. PLoS ONE, 6(6), e21469.

    Article  Google Scholar 

  • Gershenson, C. (2012). Self-organizing urban transportation systems. In J. Portugali, H. Meyer, E. Stolk, & E. Tan (Eds.), Complexity theories of cities have come of age: an overview with implications to urban planning and design (pp. 269–279). Berlin: Springer.

    Chapter  Google Scholar 

  • Gershenson, C. (2013, in press). Living in living cities. Artificial Life.

    Google Scholar 

  • Gershenson, C., & Heylighen, F. (2003). When can we call a system self-organizing? In W. Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, & J. Ziegler (Eds.), LNAI: Vol. 2801. 7th European conference on advances in artificial life, ECAL 2003 (pp. 606–614). Berlin: Springer.

    Google Scholar 

  • Gershenson, C., & Rosenblueth, D. A. (2012a). Adaptive self-organization vs. static optimization: a qualitative comparison in traffic light coordination. Kybernetes, 41(3), 386–403.

    Google Scholar 

  • Gershenson, C., & Rosenblueth, D. A. (2012b). Self-organizing traffic lights at multiple-street intersections. Complexity, 17(4), 23–39.

    Article  MathSciNet  Google Scholar 

  • GLD (2001). Green Light District.

    Google Scholar 

  • Haken, H. (1981). Synergetics and the problem of selforganization. In G. Roth & H. Schwegler (Eds.), Self-organizing systems: an interdisciplinary approach (pp. 9–13). New York: Campus.

    Google Scholar 

  • Helbing, D. (1997). Verkehrsdynamik. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Helbing, D., & Huberman, B. A. (1998). Coherent moving states in highway traffic. Nature, 396, 738–740.

    Article  Google Scholar 

  • Helbing, D., Herrmann, H. J., Schreckenberg, M., & Wolf, D. E. (Eds.) (2000). Traffic and granular flow ’99: social, traffic, and granular dynamics. Berlin: Springer.

    MATH  Google Scholar 

  • Helbing, D., Lämmer, S., & Lebacque, J.-P. (2005). Self-organized control of irregular or perturbed network traffic. In C. Deissenberg & R. F. Hartl (Eds.), Optimal control and dynamic games (pp. 239–274). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Heylighen, F. (2003). The science of self-organization and adaptivity. In L. D. Kiel (Ed.), The encyclopedia of life support systems. Oxford: EOLSS.

    Google Scholar 

  • Heylighen, F., & Gershenson, C. (2003). The meaning of self-organization in computing. IEEE Intelligent Systems, 72–75.

    Google Scholar 

  • Hunt, P. B., Robertson, D. I., Bretherton, R. D., & Winton, R. I. (1981). SCOOT—a traffic responsive method of coordinating signals (Technical report, TRRL).

    Google Scholar 

  • Lämmer, S., Kori, H., Peters, K., & Helbing, D. (2006). Decentralised control of material or traffic flows in networks using phase-synchronisation. Physica. A, 363(1), 39–47.

    Article  Google Scholar 

  • Lendaris, G. G. (1964). On the definition of self-organizing systems. Proceedings of the IEEE, 52(3), 324–325.

    Article  Google Scholar 

  • moreVTS (2006). A more realistic vehicle traffic simulator.

    Google Scholar 

  • Nicolis, G., & Prigogine, I. (1977). Self-organization in non-equilibrium systems: from dissipative structures to order through fluctuations. Chichester: Wiley.

    Google Scholar 

  • Porche, I., & Lafortune, S. (1999). Adaptive look-ahead optimization of traffic signals. Journal of Intelligent Transportation Systems, 4(3), 209–254.

    Article  Google Scholar 

  • Prigogine, I., & Herman, R. (1971). Kinetic theory of vehicular traffic. New York: Elsevier.

    MATH  Google Scholar 

  • Rosenblueth, D. A., & Gershenson, C. (2011). A model of city traffic based on elementary cellular automata. Complex Systems, 19(4), 305–322.

    MathSciNet  Google Scholar 

  • Schreckenberg, M. & Wolf, D. E. (Eds.) (1998). Traffic and granular flow ’97, Singapore. Berlin: Springer.

    Google Scholar 

  • Shalizi, C. R. (2001). Causal architecture, complexity and self-organization in time series and cellular automata. PhD thesis, University of Wisconsin at Madison.

    Google Scholar 

  • Skår, J. & Coveney, P. V. (Eds.) (2003). Self-organization: the quest for the origin and evolution of structure. Philosophical Transactions of Royal Society of London A, 361(1807). Proceedings of the 2002 Nobel Symposium on self-organization.

    Google Scholar 

  • Vincent, R. A., & Young, C. P. (1986). Self optimising traffic signal control using microprocessors—the TRRL MOVA strategy for isolated intersections. Traffic Engineering & Control, 27(7–8), 385–387.

    Google Scholar 

  • von Foerster, H. (1960). On self-organizing systems and their environments. In M. C. Yovitts & S. Cameron (Eds.), Self-organizing systems (pp. 31–50). New York: Pergamon.

    Google Scholar 

  • Wiering, M., Vreeken, J., Veenen, J. V., & Koopman, A. (2004). Simulation and optimization of traffic in a city. In IEEE intelligent vehicles symposium (IV’04) (pp. 453–458). New York: IEEE.

    Chapter  Google Scholar 

  • Wolf, D. E., Schreckenberg, M., & Bachem, A. (Eds.) (1996). Traffic and granular flow ’95. Singapore: World Scientific.

    Google Scholar 

Download references

Acknowledgements

We should like to thank the Ministerie van het Brussels Hoofdstedelijk Gewest for their support, providing the data for the Wetstraat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Gershenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Cools, SB., Gershenson, C., D’Hooghe, B. (2013). Self-Organizing Traffic Lights: A Realistic Simulation. In: Prokopenko, M. (eds) Advances in Applied Self-Organizing Systems. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/978-1-4471-5113-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5113-5_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5112-8

  • Online ISBN: 978-1-4471-5113-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics